深度学习中经常要用到epochs,batch_size、iterations这些术语,把庞大的数据分成小块,一块一块地传递给计算机,每一步的末尾更新神经网络的前缀,拟合数据
0深度学习的优化算法、梯度下降
梯度的含义是斜率或者斜坡的倾斜度。 下降的含义是代价函数的下降。
(损失函数:计算的是一个样本的误差
代价函数:是整个训练集上所有样本误差的平均
目标函数:代价函数 + 正则化项
在实际中,损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念。)
算法是迭代的,意思是需要多次使用算法获取结果,以得到最优化结果。
每次的参数更新有两种方式。
第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。
另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。
为了克服两种方法的缺点