深度学习的epochs,batch_size、iterations的理解

本文详细解析了深度学习中的epochs、batch_size和iterations等关键概念。批量梯度下降、随机梯度下降与小批量梯度下降的区别也被阐述,强调了小批量梯度下降在实际应用中的优势。batch_size指每个批次的样本数量,iterations是全部样本按batch_size划分后的训练次数,而epochs是完整数据集训练的轮数。学习率是控制权重更新步长的重要参数。
摘要由CSDN通过智能技术生成

深度学习中经常要用到epochs,batch_size、iterations这些术语,把庞大的数据分成小块,一块一块地传递给计算机,每一步的末尾更新神经网络的前缀,拟合数据

0深度学习的优化算法、梯度下降

梯度的含义是斜率或者斜坡的倾斜度。 下降的含义是代价函数的下降。
(损失函数:计算的是一个样本的误差

代价函数:是整个训练集上所有样本误差的平均

目标函数:代价函数 + 正则化项

在实际中,损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念。)
算法是迭代的,意思是需要多次使用算法获取结果,以得到最优化结果。
在这里插入图片描述每次的参数更新有两种方式。

第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。

另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。

为了克服两种方法的缺点࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值