iot-fenris训练

本文记录了使用IoT-Fenris进行目标检测模型训练的过程,包括训练图片上传、配置修改、训练过程中的错误修复、数据增强、训练结果分析以及提高训练速度的尝试。训练目标主要为猪、人、猫和狗。在训练中遇到了图片路径错误、过拟合、内存管理及训练速度等问题,通过不断调整和优化,最终取得了较好的识别效果。
摘要由CSDN通过智能技术生成

使用大神的开源工程,地址:https://github.com/YunYang1994/tensorflow-yolov3

一、训练模型

1.上传训练图片,修改配置

路径是:./data/dataset/
此次主要是训练分类:79,猪
train 889张;test 224张

修改配置文件:./core/config.py
__C.TRAIN.BATCH_SIZE            = 8
__C.TEST.BATCH_SIZE             = 8
确认train.py 47行,去掉内存逐步增加设置
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
确认coco原始模型存在

路径:./checkpoint/yolov3_coco.ckpt

2.执行训练

nohup python train.py > nohup_train.out 2>&1 &

ModuleNotFoundError: No module named ‘tqdm’

发现少了进度条插件,安装:
pip install tqdm

再次运行,报错:

File “/data0/opt/iot-fenris/core/dataset.py”, line 160, in parse_annotation
raise KeyError(&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值