目标检测之YOLOv3算法学习笔记

1、Yolo-v3版本改进

在这里插入图片描述

先验框:v1版本有两种框,v2版本有5种框,v3版本有九种框

在这里插入图片描述

2、多scale方法改进与融合

在这里插入图片描述

scale变换经典方法:左图使用图像金字塔需要进行多次输入,速度太慢;右图类似于v1版本,使用单一输入,速度要快一些

在这里插入图片描述
在这里插入图片描述

3、残差连接

在这里插入图片描述

4、核心网络架构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结果如下,蓝色的为候选框

在这里插入图片描述

5、softmax层

在这里插入图片描述
在这里插入图片描述

根据算出的多个 -yLn(y) 值,看哪个值大于一个标定值(如0.5),则这n+1个特征中就有哪个符合目标特征

在这里插入图片描述

6、python实践

Linux+YOLOv3

OCR图像识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值