LDPC编译码误码性能对比

该博客探讨了LDPC编译码的误码性能,通过计算LLR和高斯统计方差N0来比较完整LDPC编码与未编码16QAM的误码率。文中提供了算法流程,并展示了MATLAB代码实现,包括使用最小均方误差算法计算N0,以及误码率性能对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算LLR,参照symDemapper.m中Calculate LLRs段和LLR_eval.m

算法流程

  1. 计算每个符号用几个比特表示;
  2. 统计出第i个比特是0或者是1的星座点子集,并对应求出子集中每个星座点的概率
  3. 计算似然比 [LLRs] = LLR_eval(Srx,N0,C,symProb)
     A = zeros(1,nSyms);
    for k = 1:numel(Xk_0)
        A = A + exp(-abs(Srx-Xk_0(k)).^2/N0)*Pk_0(k);
    end

	LLRs(n:nBpS:end) = -log(B./A); % 注意这里是n:nBpS:end 因为每次计算的是每个符号的第1个比特,第2个比特

(搜索matlab帮助文档似然比公式的时候发现了可以搜索file exchange文件,上面是别人发的自己写过的函数,可以研究一下)

高斯统计方差N0的计算

利用最小均方误差算法计算N0

	N0 = getN0_MMSE(Stx,Srx);
   Prx = var(Srx.');
   N0 = N0 .* Prx;

完整的LDPC编码与未变码的16QAM误码率性能对比代码

clear
clc
txBits = randi([0,1],1,100000);
M = 16;
C = qammod([0:M-1],M);
SNR = 7:0.5:8;
SNR=[SNR,8.5:0.1:8.6];
SNR&#
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值