浅谈洛必达法则

引言:

洛必达用金钱买来的法则-洛必达法则:学习微积分的同学不可能不知道一个法则:洛必达法则。这是一个微积分里求极限的非常简单好用的法则,也可以称之为伯努利法则。
在这里插入图片描述1661年洛必达出生于法国中世纪的王公贵族。早年就显露出数学才能,在他15岁时就解出帕斯卡的摆线难题,以后又解出约翰·伯努利向欧洲挑战"最速降曲线问题"。他曾受袭侯爵衔,并在军队中担任骑兵军官,后来因为视力不佳而退出军队,转向学术方面加以研究。因为酷爱数学,痴迷数学,他拜约翰·伯努利为师请他辅导自己学习数学。但是洛必达在投身痴迷的数学领域之后并没有太大建树,尤其和身边老师的研究相比较而言,自己的数学发现不值一提。但是他没有就此在数学领域放弃,反而愈发痴狂。他希望自己能够在数学领域中留下自己的痕迹,像那些数学大师一样能够留名青史。于是他给他的老师约翰·伯努利修书一封:很清楚,我们互相有对方想要的东西。我在财力上帮助你,你在才智上帮助我。
在这里插入图片描述约翰·伯努利收到信之后有些震惊,但是他想了想还是接受了。这时的约翰·伯努利正值新婚时期,是需要用钱的时候,洛必达给的钱的数目又很可观。而且洛必达是一个法国贵族,这就给了他能够进入上流社会的机会,约翰想着洛必达也仅仅是喜欢数学,最多将这些研究成果拿来和身边的人炫耀一下,这些也没什么大不了的。于是他回信接受了这个提议,开始定期将自己的研究发现邮寄给洛必达。洛必达将这些研究结果细心钻研,学习并将它们整理起来。之后洛必达出版了一本书《阐明曲线的无穷小于分析》,这本书是世界上第一本系统的微积分学教科书,也是洛必达一生中最重要最著名的著作。

而在这本书中有一章详细记载了洛必达法则的内容和使用条件。此书一出版便轰动了数学界。洛必达凭借这本书,确切地说,应该是洛必达法则,一炮而红,受足了人们的拥戴,甚至还被推举进法国科学院。
在这里插入图片描述一直到洛必达死后,伯努利才拿出他与洛必达往来书信,证明洛必达法则是由他研究得出。但是欧洲的数学家并不承认,认为这场交易是正常的物物交换,因此否认了伯努利的说法。

正文相关链接:

1.如何解释洛必达法则
2.洛必达法则的使用条件
3.洛必达法则失效的情况

CSND洛必达法则是指在软件开发过程中,有80%的时间和精力会花费在解决20%的问题上。这个法则是由计算机科学家洛必达提出的,他观察到软件开发中存在着一种很有规律并且普遍的现象。 根据洛必达法则,我们可以得出以下结论。首先,尽管80%的问题只占总问题数量的20%,但解决这些问题需要花费大量的时间和精力。这是因为这些问题通常是比较复杂且困难的,可能需要深入的思考和调试才能解决。 其次,另外20%的问题可能比较简单,但却占用了很少的时间和精力。这是因为这些问题通常是一些常见的bug或者容易发现和解决的一些小问题,可以很快被发现和修复。 洛必达法则的应用很广泛。在软件开发过程中,我们可以根据这个法则来进行资源分配和进度安排。我们可以将更多的时间和精力放在解决80%的问题上,以确保软件的质量和功能完善。而对于那些20%的问题,我们可以尽量简化解决流程,以减少不必要的时间浪费。 此外,洛必达法则也可以帮助我们更好地理解问题的本质。通过观察和分析问题的分类和分布规律,我们可以更有针对性地解决问题,提高工作效率和软件质量。 总而言之,洛必达法则指出了软件开发中存在的一种普遍现象,即80%的时间和精力会花费在解决20%的问题上。我们可以根据这个法则来进行资源分配和进度安排,提高工作效率和软件质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拥抱@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值