自己动手搭建“接入 AI Agent 的数字人”

前言

本文的实战案例来自于开源项目:https://github.com/wan-h/awesome-digital-human-live2d。该项目可以运用Dify编排框架和Live2D驱动模型搭建智能数字人,实现智能对话并动态交互,大家可以自行部署尝试,项目效果如下。

开源!数字人:awesome-digital-human-live2d

一、数字人简介

数字人,是指运用数字技术创造出来的人,虽然在现阶段不能做到像科幻作品中的人型机器人一样具备高度智能,但它已经在生活的各类场景中触手可及,而且随着AI技术的发展正在爆发

目前业界还没有一个关于数字人的准确定义,但一般可以根据技术栈的不同分为两类,一类是由真人驱动的数字人,另一类是由算法驱动的数字人。

1.1 真人驱动的数字人

这类数字人重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业以及现下很火热的直播带货,其表现质量与手动建模的精细程度及动捕设备的精密程度直接相关,不过随着视觉算法的不断进步,现在在没有昂贵动捕设备的情况下也可以通过摄像头捕捉到人体骨骼和人脸的关键点信息,从而做到不错的效果。

1.2 算法驱动的数字人

这类数字人强调自驱动,人为干预更少,技术实现上更加复杂,一个最简单的算法驱动的数字人大致流程如下:

其中三个核心算法分别是:

  1. ASR (Automatic Speech Recognition,语音识别):我们希望和数字人的交互跟人一样以对话为主,所以算法驱动的第一步就是语音识别,它能将用户的音频数据转化为文字,便于数字人理解和生成回应。

  2. AI Agent(人工智能体):充当数字人的大脑,可以直接接入大语言模型,强调 Agent 的概念是

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值