【概率论】5-4:泊松分布(The Poisson Distribution)

原文地址1:https://www.face2ai.com/Math-Probability-5-4-The-Poisson-Distribution转载请标明出处

Abstract: 本文介绍Poisson分布相关知识
Keywords: Poisson Distribution

泊松分布

前面这几个分布包括今天说的泊松分布都是和二项分布,伯努利分布相互联系的,之间有各种各样的关系,我们的学习目的不是背诵所有这些分布的性质,而是在这些性质的推到过程。

很多实验比较关注次数,比如一段时间内到达商店的顾客的人数,电话交换机每分钟受到的通话请求,洪水或者其他自然人为灾害发生的次数。泊松分布被用来建模,一段事件这些事情发生的次数,并且泊松分布也是用来近似当 p p p 很小的时候的二项分布的一种方法。

泊松分布的定义和性质 Definition and Properties of the Poisson Distributions

先来看一个商店一段时间有多少顾客到来的例子,这个例子会贯穿正片博客,大家应该好好读一下。


商店老板相信,顾客们以每个小时4.5 人次的数量来到商店,他想找到一个X的分布,这个X表示在未来某个一个小时,到店的客人数,并且他认为这些到来的客人之间相互独立,于是他的做法是按照一个小时3600秒计算,平均每秒来 0.00125 个人,并且假设一秒钟不会同时出现两个人同时到店的可能,那么某时间点,到达的人数为0或者1,为1的可能性是0.00125,整个过程是一个二项分布,n=3600,p=0.00125。
这看起来很正确也很流畅
于是他要计算p.f.了:
f ( x ∣ n = 3600 , p = 0.00125 ) = { ( 3600 x ) p x ( 1 − p ) 3600 − x for  0 ≤ x ≤ 3600 0 otherwise f(x|n=3600,p=0.00125)= \begin{cases} \begin{pmatrix} 3600\\x \end{pmatrix}p^x(1-p)^{3600-x}&\text{for }0\leq x\leq 3600\\ 0&\text{otherwise} \end{cases} f(xn=3600,p=0.00125)=(3600x)px(1p)3600x0for 0x3600otherwise

这个式子非常有意思,当参数 ( 3600 x ) \begin{pmatrix} 360 0\\x \end{pmatrix} (3600x) 变大的时候, 参数 p x ( 1 − p ) 3600 − x p^x(1-p)^{3600-x} px(1p)3600x 似乎以同等的速度变小,而整体却变化不大,于是我们对相邻的两个随机变量值做个比较(以下把 X X X 扩展到在0到 n n n 之间变化)
f ( x + 1 ) f ( x ) = ( n x + 1 ) p x + 1 ( 1 − p ) n − x − 1 ( n x ) p x + 1 ( 1 − p ) n − x − 1 = ( n − x ) p ( x + 1 ) ( 1 − p ) ≈ n p x + 1 \begin{aligned} \frac{f(x+1)}{f(x)}&= \frac {\begin{pmatrix}n\\x+1\end{pmatrix}p^{x+1}(1-p)^{n-x-1}} {\begin{pmatrix}n\\x\end{pmatrix}p^{x+1}(1-p)^{n-x-1}}\\ &=\frac{(n-x)p}{(x+1)(1-p)}\\ &\approx\frac{np}{x+1} \end{aligned} f(x)f(x+1)=(nx)px+1(1p)nx1(nx+1)px+1(1p)nx1=(x+1)(1p)(nx)px+1np

那么根据这个比值,如果我们设 λ = n p \lambda=np λ=np 那么我们会有一个递归关系:
f ( 1 ) = f ( 0 ) λ f ( 2 ) = f ( 1 ) λ 2 = f ( 0 ) λ 2 2 f ( 3 ) = f ( 2 ) λ 3 = f ( 0 ) λ 3 6 ⋮ f ( n ) = f ( n − 1 ) λ n = = f ( 0 ) λ n n ! f(1)=f(0)\lambda\\ f(2)=f(1)\frac{\lambda}{2}=f(0)\frac{\lambda^2}{2}\\ f(3)=f(2)\frac{\lambda}{3}=f(0)\frac{\lambda^3}{6}\\ \vdots\\ f(n)=f(n-1)\frac{\lambda}{n}==f(0)\frac{\lambda^n}{n!}\\ f(1)=f(0)λf(2)=f(1)2λ=f(0)2λ2f(3)=f(2)3λ=f(0)6λ3f(n)=f(n1)nλ==f(0)n!λn
因为 f f f 是一个近似来的 p.f. 那么我们需要让他满足我们的条件,比如,所有随机变量对应的概率求和是1.
∑ x = 0 ∞ f ( x ) = 1 \sum^{\infty}_{x=0}f(x)=1 x=0f(x)=1
因为整个关系式能调整的部分就只有 f ( 0 ) f(0) f(0) 了,那么我们只好调整初始化条件来使得p.f.成立了,
∑ x = 0 ∞ f ( 0 ) λ n n ! = 1 f ( 0 ) ∑ x = 0 ∞ λ n n ! = 1 for : ∑ x = 0 ∞ λ n n ! = e λ so : f ( 0 ) = e − λ \sum^{\infty}_{x=0}f(0)\frac{\lambda^n}{n!}=1\\ f(0)\sum^{\infty}_{x=0}\frac{\lambda^n}{n!}=1\\ \text{for :}\sum^{\infty}_{x=0}\frac{\lambda^n}{n!}=e^{\lambda}\\ \text{so :}f(0)=e^{-\lambda} x=0f(0)n!λn=1f(0)x=0n!λn=1for :x=0n!λn=eλso :f(0)=eλ
所以我们只需要让 f ( 0 ) = e − λ f(0)=e^{-\lambda} f(0)=eλ 即可,关于求和等于 e λ e^{\lambda} eλ 的计算可以参开微积分书籍。

那么我们就有了一个新的能够近似上面二项分布的新分布——Poisson Distribution:
f ( x ∣ λ ) = { e − λ λ x x ! for  x = 1 , 2 , 3 , … 0 otherwise f(x|\lambda)= \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!}&\text{for }x=1,2,3,\dots\\ 0&\text{otherwise} \end{cases} f(xλ)={x!eλλx0for x=1,2,3,otherwise

这个分布就是我们今天的主角,也是概率论中非常重要的一个分布,可以用来描述一段时间内某事发生的次数的模型。

Definition Poisson Distribution.Let λ > 0 \lambda > 0 λ>0 .A random variable X has the Poisson Distribution with mean λ \lambda λ if the p.f. of X X X is as follow:
f ( x ∣ λ ) = { e − λ λ x x ! for  x = 1 , 2 , 3 , … 0 otherwise f(x|\lambda)= \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!}&\text{for }x=1,2,3,\dots\\ 0&\text{otherwise} \end{cases} f(xλ)={x!eλλx0for x=1,2,3,otherwise

还是传统的定义方法,告诉你,这个式子是泊松分布~

泊松分布的均值 Mean

Theorem Mean. The mean of Poisson Distribution with p.f. equal to upside is λ \lambda λ .
怎么样!神奇不神奇~均值是 λ \lambda λ
我们接下来就来证明这一点。
直接使用期望的定义
E ( X ) = ∑ x = 0 ∞ x f ( x ∣ λ ) E(X)=\sum^{\infty}_{x=0}xf(x|\lambda) E(X)=x=0xf(xλ)
当x=0 时,值为0,我们直接从1开始
E ( X ) = ∑ x = 0 ∞ x e − λ λ x x ! = ∑ x = 1 ∞ e − λ λ x ( x − 1 ) ! = λ ∑ x = 1 ∞ e − λ λ x − 1 ( x − 1 ) ! if we set  y = x − 1 = λ ∑ y = 0 ∞ e − λ λ y y ! \begin{aligned} E(X)&=\sum^{\infty}_{x=0}x\frac{e^{-\lambda}\lambda^x}{x!}\\ &=\sum^{\infty}_{x=1}\frac{e^{-\lambda}\lambda^x}{(x-1)!}\\ &=\lambda\sum^{\infty}_{x=1}\frac{e^{-\lambda}\lambda^{x-1}}{(x-1)!}\\ \text{if we set } y=x-1\\ &=\lambda\sum^{\infty}_{y=0}\frac{e^{-\lambda}\lambda^{y}}{y!} \end{aligned} E(X)if we set y=x1=x=0xx!eλλx=x=1(x1)!eλλx=λx=1(x1)!eλλx1=λy=0y!eλλy
这样 ∑ y = 0 ∞ e − λ λ y y ! \sum^{\infty}_{y=0}\frac{e^{-\lambda}\lambda^{y}}{y!} y=0y!eλλy 变成了一个对p.f.为 f ( y ∣ λ ) f(y|\lambda) f(yλ) 的概率函数求和的计算,结果必然为1,那么我们就证明了泊松分布的期望是 —— λ \lambda λ

泊松分布的方差 Varaince

Theorem Variance.The variance of Poisson distribution with mean λ \lambda λ is also λ \lambda λ
意外不意外!惊喜不惊喜!依旧是 λ \lambda λ
证明:
我们将用到和上面证明期望一样的方法就是通过凑,来使得求和里面变成 p.f.的样子
E [ X ( X − 1 ) ] = ∑ x = 0 ∞ x ( x − 1 ) f ( x ∣ λ ) = ∑ x = 2 ∞ x ( x − 1 ) f ( x ∣ λ ) = ∑ x = 2 ∞ x ( x − 1 ) e − λ λ x x ! = λ 2 ∑ x = 2 ∞ e − λ λ x − 2 x − 2 ! We set  y = x − 2 E [ X ( X − 1 ) ] = λ 2 ∑ y = 0 ∞ e − λ λ y y ! = λ 2 \begin{aligned} E[X(X-1)]&=\sum^{\infty}_{x=0}x(x-1)f(x|\lambda)\\ &=\sum^{\infty}_{x=2}x(x-1)f(x|\lambda)\\ &=\sum^{\infty}_{x=2}x(x-1)\frac{e^{-\lambda}\lambda^x}{x!}\\ &=\lambda^2\sum^{\infty}_{x=2}\frac{e^{-\lambda}\lambda^{x-2}}{x-2!}\\ \text{We set }y=x-2\\ E[X(X-1)]&=\lambda^2\sum^{\infty}_{y=0}\frac{e^{-\lambda}\lambda^y}{y!}\\ &=\lambda^2 \end{aligned} E[X(X1)]We set y=x2E[X(X1)]=x=0x(x1)f(xλ)=x=2x(x1)f(xλ)=x=2x(x1)x!eλλx=λ2x=2x2!eλλx2=λ2y=0y!eλλy=λ2

然后我们祭出我们的大招 E [ X ( X − 1 ) ] = E [ X 2 ] − E [ X ] = E [ X 2 ] − λ = λ 2 E[X(X-1)]=E[X^2]-E[X]=E[X^2]-\lambda=\lambda^2 E[X(X1)]=E[X2]E[X]=E[X2]λ=λ2 所以 E [ X 2 ] = λ 2 + λ E[X^2]=\lambda^2+\lambda E[X2]=λ2+λ 那么
V a r ( X ) = E [ X 2 ] − E 2 [ x ] = λ 2 + λ − λ 2 = λ Var(X)=E[X^2]-E^2[x]=\lambda^2+\lambda-\lambda^2=\lambda Var(X)=E[X2]E2[x]=λ2+λλ2=λ

至此证毕,构造了 E [ X 2 ] E[X^2] E[X2] 然后求出了 V a r ( X ) Var(X) Var(X)

泊松分布的距生成函数 m.g.f.

接着我们研究第三大工具,m.g.f.

Theorem Moment Generating Function.The m.g.f. of the Poisson distribution with mean λ \lambda λ is
ψ ( t ) = e λ ( e t − 1 ) \psi(t)=e^{\lambda(e^t-1)} ψ(t)=eλ(et1)
for all real t t t
证明如下:
ψ ( t ) = E ( e t X ) = ∑ x = 0 ∞ e t x e − λ λ x x ! = e − λ ∑ x = 0 ∞ ( λ e t ) x x ! \psi(t)=E(e^{tX})=\sum^{\infty}_{x=0}\frac{e^{tx}e^{-\lambda}\lambda^x}{x!}=e^{-\lambda}\sum^{\infty}_{x=0}\frac{(\lambda e^t)^x}{x!} ψ(t)=E(etX)=x=0x!etxeλλx=eλx=0x!(λet)x
根据 e e e 级数性质
∑ x = 0 ∞ ( λ e t ) x x ! = e λ e t \sum^{\infty}_{x=0}\frac{(\lambda e^t)^x}{x!}=e^{\lambda e^t} x=0x!(λet)x=eλet
那么我们对于 − ∞ < t < ∞ -\infty < t< \infty <t< 有:
ψ ( t ) = e − λ e λ e t = e λ ( e t − 1 ) \psi(t)=e^{-\lambda}e^{\lambda e^t}=e^{\lambda(e^t-1)} ψ(t)=eλeλet=eλ(et1)

有了m.g.f就能得到期望,方差或者其他阶距。

泊松分布随机变量相加

Theorem If the random variable X 1 , … , X k X_1,\dots,X_k X1,,Xk are independent and if X i X_i Xi has Poisson distribution with mean λ i ( i = 1 , … , k ) \lambda_i(i=1,\dots,k) λi(i=1,,k) ,then the sum X 1 + ⋯ + X k X_1+\dots+X_k X1++Xk has the Poisson distribution with mean λ 1 + ⋯ + λ k \lambda_1+\dots+\lambda_k λ1++λk

拥有相同参数的二项分布可以进行加法运算,这一点我们前面就已经证明过了,今天要证明的是Poisson分布也能进行加法,而且不需要参数一致,用到的方法是用m.g.f进行分析:

证明:
首先令 ψ i ( t ) \psi_i(t) ψi(t) 来定义 X i X_i Xi 的m.g.f. 并且 X i X_i Xi 是均值为 λ i \lambda_i λi 的Poisson分布。并且 X 1 , … , X n X_1,\dots,X_n X1,,Xn 之间相互独立,那么对于 − ∞ < t < ∞ -\infty<t<\infty <t< 我们有:
ψ ( t ) = Π i = 1 k ψ i ( t ) = Π i = 1 k e λ i ( e t − 1 ) = e ( λ 1 + ⋯ + λ k ) ( e t − 1 ) \psi(t)=\Pi^k_{i=1}\psi_i(t)=\Pi^k_{i=1}e^{\lambda_i(e^t-1)}=e^{(\lambda_1+\dots+\lambda_k)(e^t-1)} ψ(t)=Πi=1kψi(t)=Πi=1keλi(et1)=e(λ1++λk)(et1)

结合前面泊松分布的m.g.f.可见定理成立。

二项分布的泊松近似 The Poisson Approximation to Binomial Distributions

接下来我们研究一下泊松分布近似二项分布的详细内容。

Theorem Closeness of Binomial and Pisson Distribution.For each integer n and each 0 < p < 1 0 < p < 1 0<p<1 ,let f ( x ∣ n , p ) f(x|n,p) f(xn,p) denote the p.f. of the binomial distribtuion with parameters n n n and p p p .Let f ( x ∣ λ ) f(x|\lambda) f(xλ) denote the p.f. of the Poisson distribution with mean λ \lambda λ .Let { P n } n = 1 ∞ {\{P_n\}}^{\infty}_{n=1} {Pn}n=1 be a sequence of numbers between 0 and 1 such that l i m n → ∞ n p n = λ lim_{n\to \infty}np_n=\lambda limnnpn=λ . Then
l i m n → ∞ f ( x ∣ n , p n ) = f ( x ∣ λ ) lim_{n\to \infty}f(x|n,p_n)=f(x|\lambda) limnf(xn,pn)=f(xλ)
for all x = 0 , 1 … x=0,1\dots x=0,1

定理表明了二项分布和Poisson分布的近似关系,虽然我们在开篇的例子里面已经提到了用Poisson分布来近似 n n n 比较大, p p p 比较小, n p np np 又不大的问题,但是我们还是需要从理论上分析下二项分布和Poisson分布到底有什么关系。
证明:
首先我们写出二项分布
f ( x ∣ n , p n ) = n ( n − 1 ) … ( n − x + 1 ) x ! p n x ( 1 − p n ) n − x f(x|n,p_n)=\frac{n(n-1)\dots(n-x+1)}{x!}p_n^x(1-p_n)^{n-x} f(xn,pn)=x!n(n1)(nx+1)pnx(1pn)nx
提示,把组合运算展开写的。
然后我们令 λ n = n p n \lambda_n=np_n λn=npn 那么 l i m n → ∞ λ n = λ lim_{n\to \infty}\lambda_n=\lambda limnλn=λ 这样我们就有
f ( x ∣ n , p n ) = λ n x x ! n n ⋅ n − 1 n … n − x + 1 n ( 1 − λ n n ) n ( 1 − λ n n ) − x f(x|n,p_n)=\frac{\lambda_n^x}{x!}\frac{n}{n}\cdot\frac{n-1}{n}\dots \frac{n-x+1}{n}(1-\frac{\lambda_n}{n})^n(1-\frac{\lambda_n}{n})^{-x} f(xn,pn)=x!λnxnnnn1nnx+1(1nλn)n(1nλn)x

对于每个 x ≥ 0 x\geq 0 x0 来说,我们有:
l i m n → ∞ n n ⋅ n − 1 n … n − x + 1 n ( 1 − λ n n ) − x = 1 lim_{n\to \infty}\frac{n}{n}\cdot\frac{n-1}{n}\dots \frac{n-x+1}{n}(1-\frac{\lambda_n}{n})^{-x}=1 limnnnnn1nnx+1(1nλn)x=1
这个是微积分要解决的问题,不知道的同学需要去参考下微积分的知识。上文中倒数第二个定理,我们没有证明,但是那个结论在这里还需要再次使用
l i m n → ∞ ( 1 − λ n n ) n = e − λ lim_{n\to \infty}(1-\frac{\lambda_n}{n})^{n}=e^{-\lambda} limn(1nλn)n=eλ

所以
l i m n → ∞ f ( x ∣ n , p n ) = e − λ λ x x ! = f ( x ∣ λ ) lim_{n\to \infty}f(x|n,p_n)=\frac{e^{-\lambda}\lambda^x}{x!}=f(x|\lambda) limnf(xn,pn)=x!eλλx=f(xλ)

证毕。
接下来这个定理是说超几何分布和Poisson分布之间的关系的,没有证明,但是可以参考下结论。

Theorem Closeness of Hypergeometric and Poisson Distribution.Let λ > 0 \lambda>0 λ>0 .Let Y Y Y have the Poisson distribution with mean λ \lambda λ .For each postive integer T T T ,let A T , B T A_T,B_T AT,BT ,and n T n_T nT be integers such that l i m T → ∞ n T A T / ( A T + B T ) = λ lim_{T\to \infty}n_TA_T/(A_T+B_T)=\lambda limTnTAT/(AT+BT)=λ .Let X T X_T XT have the hypergeometric distribution with parameters A T , B T A_T,B_T AT,BT and n T n_T nT .Tor each fixed x = 0 , 1 , … x=0,1,\dots x=0,1,
l i m T → ∞ P r ( Y = x ) P r ( X t = x ) = 1 lim_{T\to \infty}\frac{Pr(Y=x)}{Pr(X_t=x)}=1 limTPr(Xt=x)Pr(Y=x)=1

泊松过程 Poisson Processes

前面我们第一个例子说的如何估算在一个小时内到店的客户,那么如果是我想知道半个小时或者15分钟的顾客数量呢?难道是要用2.25个或者1.125个作为平均数的Poisson Distribution建模么?于是我们使用Poisson过程来对这种情况建模。

Definition Poisson Process.A Poisson process with rate λ \lambda λ per unit time is a process that satisfies the following two properties:
i: The number of arrivals in every fixed interval of time of length t t t has the Poisson distribution with mean λ t \lambda t λt
ii: The numbers of arrivals in every collection of disjoint time intervals are independent

泊松过程满足两点要求,首先固定时间段内平均时长 λ t \lambda t λt,其次每个不同时段之间人数彼此独立。
所以上面我们说是否能用改了 λ \lambda λ 的泊松分布建模这个答案是肯定的就是通过改变 λ \lambda λ 值来重新建模的。
后面有一个关于泊松过程的选读内容,有兴趣的同学可以在书上找到

总结

本文介绍泊松分布,性质及用途,以及泊松过程
明天继续。。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值