有关聊天机器人的近两年的优秀论文和开源程序

本文深入探讨了聊天机器人的最新进展,包括神经网络模型、序列到序列学习、翻译、自动摘要和问答系统等多个方面。文章列举了多个优秀的开源程序和论文,覆盖了从理论到实战的广泛内容,对于研究聊天机器人技术的读者来说是一份宝贵的资源。
摘要由CSDN通过智能技术生成

本文属于研究聊天机器人,前沿学术内容;附带大量 GitHub 程序,先收藏!

示例程序

Practical Neural Networks for NLP

Structured Neural Networks for NLP: From Idea to Code

Understanding Deep Learning Models in NLP

http://nlp.yvespeirsman.be/blog/understanding-deeplearning-models-nlp/

Deep learning for natural language processing, Part 1

https://softwaremill.com/deep-learning-for-nlp/

神经网络模型

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4VRLU1ok-1600087303353)(/assets/dl-materials/Unifying_Visual-Semantic_Embeddings_with_Multimodal_Neural_Language_Models.png)]

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

Visualizing and Understanding Neural Models in NLP

Character-Aware Neural Language Models

Skip-Thought Vectors

A Primer on Neural Network Models for Natural Language Processing

Character-aware Neural Language Models

Neural Variational Inference for Text Processing

Sequence to Sequence Learning

Generating Text with Deep Reinforcement Learning

MUSIO: A Deep Learning based Chatbot Getting Smarter

Translation

Learning phrase representations using rnn encoder-decoder for statistical machine translation

Neural Machine Translation by Jointly Learning to Align and Translate

Multi-Source Neural Translation

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism

Modeling Coverage for Neural Machine Translation

A Character-level Decoder without Explicit Segmentation for Neural Machine Translation

NEMATUS: Attention-based encoder-decoder model for neural machine translation

Variational Neural Machine Translation

Neural Network Translation Models for Grammatical Error Correction

Linguistic Input Features Improve Neural Machine Translation

Sequence-Level Knowledge Distillation

Neural Machine Translation: Breaking the Performance Plateau

Tips on Building Neural Machine Translation Systems

Semi-Supervised Learning for Neural Machine Translation

EUREKA-MangoNMT: A C++ toolkit for neural machine translation for CPU

Deep Character-Level Neural Machine Translation

Neural Machine Translation Implementations

Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Learning to Translate in Real-time with Neural Machine Translation

Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions

Fully Character-Level Neural Machine Translation without Explicit Segmentation

Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation

Neural Machine Translation in Linear Time

Neural Machine Translation with Reconstruction

A Convolutional Encoder Model for Neural Machine Translation

Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder

MXNMT: MXNet based Neural Machine Translation

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation

Massive Exploration of Neural Machine Translation Architectures

Depthwise Separable Convolutions for Neural Machine Translation

自动摘要

Extraction of Salient Sentences from Labelled Documents

A Neural Attention Model for Abstractive Sentence Summarization

A Convolutional Attention Network for Extreme Summarization of Source Code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值