1984年的始祖文章:
http://www.soe.ucsc.edu/classes/cmps160/Fall05/papers/p207-crow.pdf
后来的一些:
http://www.shaderwrangler.com/publications/sat/SAT_EG2005.pdf (这个比较好)
http://ati.amd.com/developer/gdc/GDC2005_SATEnvironmentReflections.pdf
summed area table对应的技术最接近的是mipmap,mipmap每一阶的标准做法是上一阶对应的4个像素的平均(某些情况是2个)。
也就是说在mipmap的情况下我们要拿一些平均过的texel就被局限到这种正方形(某些情况是长方形)的kernal里,如果想有更多种类的取法,1*3,2*5这种,那么会直接导致性能变化剧烈。
summed area table则提供了可以在恒定时间(如果不考虑texture sample cache效率,认为texture sample都是一样时间的话)在一定范围内任意矩形的sample kernel。
实际应用中,真正比mipmap强力的地方大抵是这些,在summed area table variance shadow map里有个比较好的实例应用:
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html
尤其是里面percentage closer shadow map那个应用。
先上算法,给定一个texture,需要先构建这个summed area table:
里面每个element是它左边和上面所有texel的值的和。
图示:
filter summed area table,在使用SAT的时候,根据要sample的kernel,结果的定义:
filter这一步可以看到,只要取4个pixel就可以实现对任意矩形形状内部的texel的平均值计算,这也是SAT强力的地方。
代码:
具体应用的时候效率和精度是考虑重点,构建SAT过程中有用到一个recurcive doubling的方法来快速构建。
recursive doubling就是一种非常适合多线程并行计算的东西,单线程的pipeline指令也可以从中受益很多,图示:
这样log_2(n)次可以搞定。
实际应用中,每个pass可以sample更多的texel,而且可以再log_sample_num(n)pass构建好。
另一个是精度问题,因为存的东西可能值非常大,所以需要24bit或者32bit精度的texture来保存,这个有点寒。。。
另外偏移0.5在sample初始texture和构建SAT过程中也会增加一些精度。
所以总体下来,不太好说这个技术好用不好用。
虽然在adaptive kernel上有好的表现,但是更多的pass和精度要求又带来performance和空间上的消耗。
另外比如说要把shadow map升级到pcss这种,这个就要有额外的开销,这个只有要实现出来profile了才能做最后的决定。
但是的确是一个很有意思的技术。