SummedAreaTable

1984年的始祖文章:

http://www.soe.ucsc.edu/classes/cmps160/Fall05/papers/p207-crow.pdf

 

后来的一些:

http://www.shaderwrangler.com/publications/sat/SAT_EG2005.pdf (这个比较好)

http://ati.amd.com/developer/gdc/GDC2005_SATEnvironmentReflections.pdf

 

summed area table对应的技术最接近的是mipmap,mipmap每一阶的标准做法是上一阶对应的4个像素的平均(某些情况是2个)。

也就是说在mipmap的情况下我们要拿一些平均过的texel就被局限到这种正方形(某些情况是长方形)的kernal里,如果想有更多种类的取法,1*3,2*5这种,那么会直接导致性能变化剧烈。

summed area table则提供了可以在恒定时间(如果不考虑texture sample cache效率,认为texture sample都是一样时间的话)在一定范围内任意矩形的sample kernel。

 

实际应用中,真正比mipmap强力的地方大抵是这些,在summed area table variance shadow map里有个比较好的实例应用:

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html

尤其是里面percentage closer shadow map那个应用。

 

先上算法,给定一个texture,需要先构建这个summed area table:

 

里面每个element是它左边和上面所有texel的值的和。

图示:

 

filter summed area table,在使用SAT的时候,根据要sample的kernel,结果的定义:

 

 

 

 

filter这一步可以看到,只要取4个pixel就可以实现对任意矩形形状内部的texel的平均值计算,这也是SAT强力的地方。

代码:

 

具体应用的时候效率和精度是考虑重点,构建SAT过程中有用到一个recurcive doubling的方法来快速构建。

 

 recursive doubling就是一种非常适合多线程并行计算的东西,单线程的pipeline指令也可以从中受益很多,图示:

 

 

这样log_2(n)次可以搞定。

实际应用中,每个pass可以sample更多的texel,而且可以再log_sample_num(n)pass构建好。

 

另一个是精度问题,因为存的东西可能值非常大,所以需要24bit或者32bit精度的texture来保存,这个有点寒。。。

另外偏移0.5在sample初始texture和构建SAT过程中也会增加一些精度。

 


 

所以总体下来,不太好说这个技术好用不好用。

虽然在adaptive kernel上有好的表现,但是更多的pass和精度要求又带来performance和空间上的消耗。

另外比如说要把shadow map升级到pcss这种,这个就要有额外的开销,这个只有要实现出来profile了才能做最后的决定。

 

但是的确是一个很有意思的技术。

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值