VAE总结

这段时间看了VAE的有关知识,但网上关于VAE的讲解较为理论复杂,我这里就记录一下自己的想法了。


定义

VAE从概率的角度描述隐空间与输入样本,它将样本的隐变量建模为概率分布, 而非像AE一样把隐变量看做是离散的值。

AE VS VAE

1

损失函数

2

我们假设隐变量的概率分布为标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1)(这种分布不是必须的,也可以是其它分布)。而描述正态分布需要有两个参数 μ x , σ x \mu_x, \sigma_x μx,σx,在encoder端使用神经网络来拟合这两个参数。在decoder端,使用神经网络来还原出原始图像。因此,VAE的损失函数分为两部分:

  • 正则化项,也就是KL Loss

  • 重构损失

L = L R e c o n + L K L = ∥ x − x ^ ∥ 2 + K L [ N ( μ x , σ x ) , N ( 0 , 1 ) ] = ∥ x − d ( z ) ∥ 2 + K L [ N ( μ x , σ x ) , N ( 0 , 1 ) ] \begin{aligned} L &= L_{Recon} + L_{KL} \\ &= \|x-\hat{x}\|^{2}+\mathrm{KL}[N(\mu_{x}, \sigma_{x}), N(0, 1)] \\ &= \|x-d(z)\|^{2}+K L[N(\mu_{x}, \sigma_{x}), N(0, 1)] \end{aligned} L=LRecon+LKL=xx^2+KL[N(μx,σx),N(0,1)]=xd(z)2+KL[N(μx,σx),N(0,1)]

关于 K L [ N ( μ x , σ x ) , N ( 0 , 1 ) ] K L\left[N\left(\mu_{x}, \sigma_{x}\right), N(0,1)\right] KL[N(μx,σx),N(0,1)]的推导如下:

K L ( N ( μ , σ 2 ) ∥ N ( 0 , 1 ) ) = ∫ 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 ( log ⁡ e − ( x − μ ) 2 2 σ 2 2 π σ 2 e − x 2 2 2 π ) d x = ∫ 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 log ⁡ { 1 σ 2 exp ⁡ { 1 2 [ x 2 − ( x − μ ) 2 σ 2 ] } } d x = 1 2 ∫ 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 [ − log ⁡ σ 2 + x 2 − ( x − μ ) 2 σ 2 ] d x = 1 2 ( − log ⁡ σ 2 + μ 2 + σ 2 − 1 ) \begin{aligned} & K L\left(N\left(\mu, \sigma^{2}\right) \| N(0,1)\right) \\ =& \int \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}} }\left(\log \frac{\frac{e^{ \frac{-(x-\mu)^{2}}{2 \sigma^{2}} }}{\sqrt{2 \pi \sigma^{2}}} }{\frac{e^{\frac{-x^{2}}{2}}}{\sqrt{2 \pi}} }\right) d x \\ =& \int \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}} } \log \left\{\frac{1}{\sqrt{\sigma^{2}}} \exp \left\{\frac{1}{2}\left[x^{2}- \frac{(x-\mu)^{2}}{\sigma^{2}} \right]\right\}\right\} d x \\ =& \frac{1}{2} \int \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}} }\left[-\log \sigma^{2}+x^{2}- \frac{(x-\mu)^{2}}{\sigma^{2}} \right] d x \\ =& \frac{1}{2}\left(-\log \sigma^{2}+\mu^{2}+\sigma^{2}-1\right) \end{aligned} ====KL(N(μ,σ2)N(0,1))2πσ2 1e2σ2(xμ)2log2π e2x22πσ2 e2σ2(xμ)2dx2πσ2 1e2σ2(xμ)2log{σ2 1exp{21[x2σ2(xμ)2]}}dx212πσ2 1e2σ2(xμ)2[logσ2+x2σ2(xμ)2]dx21(logσ2+μ2+σ21)

重参数技巧

我们从概率分布中采样出 z z z ,但是该过程是不可导的。VAE通过重参数化使得梯度不因采样而断裂。

3

总结

其实VAE可以看成一个做降维的model,我们希望把一个高维的特征投影到一个低维的流型上。而在VAE中,这个低维流型就是一个多元标准正态分布。为了使投影准确,于是通过希望每一个样本 X i X_i Xi的计算出来的期望与方差都接近与我们希望投影的分布,所以这里就有了相KL Loss。至于重构损失,是可以使采样的时候更加准确,能够采样到我们在encode的时候投影到的点。

最佳实践

Pytorch实现: VAE 这篇博客实现了VAE,整体上代码简单易懂。在generation阶段,我们只需从学习到的概率分布中采样,然后送入decoder中解码,即可获得生成的图片。


参考

深度学习生成模型VAE(Variational Autoencoder)是一种基于神经网络的生成模型。VAE在产生新数据的时候是基于已有数据来做的,通过学习数据的潜在空间表示,然后从该空间中采样生成新的数据样本。VAE模型结合了自编码器和变分推断的思想,通过最大化样本的下界来优化模型参数,使得生成的样本能够更好地拟合原始数据分布。 与传统的自编码器相比,VAE在编码器部分引入了一个均值向量和方差向量,这样可以使得编码后的潜在表示服从一个高斯分布。这种设计使得VAE不仅能够学习到数据的低维表示,还能够通过在潜在空间中进行采样来生成新的样本。VAE模型的损失函数由重构误差项和正则化项组成,通过最小化该损失函数可以使得生成的样本能够尽可能地接近原始数据分布。 尽管VAE在生成新数据方面的效果相对于其他模型可能有些模糊,但它在学习数据分布和生成新数据方面仍然具有一定的优势。通过使用变分推断和重参数化技巧,VAE能够生成具有多样性的样本,并且能够在潜在空间中进行插值和操作,从而得到更多样化的结果。 总结来说,VAE是一种深度学习生成模型,通过学习数据的潜在空间表示,可以生成新的样本。它结合了自编码器和变分推断的思想,并通过最大化样本的下界来优化模型参数。尽管生成的样本可能有些模糊,但VAE在学习数据分布和生成多样化样本方面具有一定的优势。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值