多标签分类新建模方法

本文介绍了一种新的多标签分类方法C-Tran,它利用Transformer的序列输出特性结合BERT的MLM预训练任务,学习标签间的依赖关系。LabelEmbeddings和StateEmbeddings的设计使得模型更有效率。C-Tran在实验中超越了旷视使用GCN的方法,展现出SOTA性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常见的多标签分类方法是同时生成多个标签的logits,然后接一个sigmoid激活函数做二分类。该方法简单直接,但忽略了标签之间的相关性。虽然业界针对该问题提出了很多解决思路,但大多是任务特定,通用性不强,也不够优雅。

Transformer decoder倒是可以序列输出多个标签,但却加入了位置偏差。而标签之间是没有位置关系的,谁先谁后无所谓,只要输出全就行。这样也导致数据集不好构造。

C-Tran

General Multi-label Image Classification with Transformers 这篇论文提供了新思路,类似BERT的MLM预训练任务:通过在输入端对多个标签做随机mask,然后预测被mask的标签,从而强制模型去学习标签之间的依赖关系:

model

模型细节:
detail

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值