通过FAR计算fRR

本文介绍了计算人脸识别系统中FAR(False Acceptance Rate)和FRR(False Rejection Rate)的方法。通过将样本分为匹配和不匹配两类,分别计算正确和错误的匹配及拒绝情况,然后利用错误接受数和错误拒绝数来得出这两个关键指标。例如,在10000对样本中,FAR为1%,FRR为5%。
摘要由CSDN通过智能技术生成

如果你有1万对样本,计算FAR和FRR的方法如下:
1. 首先,将样本分为两类:匹配和不匹配。
2. 对于每一对匹配样本,进行人脸识别,如果识别结果正确,则将正确匹配数加1,否则将错误接受数加1。
3. 对于每一对不匹配样本,进行人脸识别,如果识别结果错误,则将错误拒绝数加1,否则将正确拒绝数加1。
4. 计算FAR和FRR: - FAR = 错误接受数 / (正确匹配数 + 错误接受数) - FRR = 错误拒绝数 / (正确拒绝数 + 错误拒绝数)
例如,如果你有10000对样本进行人脸识别,其中正确匹配数为9500,错误接受数为100,正确拒绝数为4900,错误拒绝数为500,则FAR为0.01(即1%),FRR为0.05(即5%)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值