使用优化和量化嵌入器进行文档嵌入

引言

在自然语言处理(NLP)中,文档嵌入是将文本表示为向量的关键步骤,这对于文本检索和相似度比较尤为重要。近年来,量化嵌入器通过优化模型和量化技术提供了更高效的解决方案。本文将介绍如何使用基于SBERT的量化嵌入器进行文档嵌入,并探讨其应用及相关挑战。

主要内容

优化和量化模型

量化嵌入器通过优化模型(如optimum-intel)和量化技术(如IPEX)实现高效的向量嵌入。这些技术的结合不仅提高了模型的推理速度,还降低了内存需求。

使用量化模型

在以下示例中,我们将使用QuantizedBiEncoderEmbeddings进行文档嵌入。这个嵌入器基于Intel的优化模型,具备静态量化特性。

from langchain_community.embeddings import QuantizedBiEncoderEmbeddings

model_name = "Intel/bge-small-en-v1.5-rag-int8-static"
encode_kwargs = {"normalize_embeddings": True}  # set True to compute cosine similarity

model = QuantizedBiEncoderEmbeddings(
    model_name=model_name,
    encode_kwargs=encode_kwargs,
    query_instruction="Represent this sentence for searching relevant passages: ",
)

代码示例

以下示例展示了如何比较查询与两个文档之间的相似度。其中一个文档包含答案,另一个则不包含。

question = "How many people live in Berlin?"

documents = [
    "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.",
    "Berlin is well known for its museums.",
]

# 嵌入文档
doc_vecs = model.embed_documents(documents)

# 嵌入查询
query_vec = model.embed_query(question)

import torch

doc_vecs_torch = torch.tensor(doc_vecs)
query_vec_torch = torch.tensor(query_vec)

# 计算查询与文档的相似度
similarity_scores = query_vec_torch @ doc_vecs_torch.T
print(similarity_scores)

输出:

tensor([0.7980, 0.6529])

可以看到,第一个文档的相似度得分更高,与查询更匹配。

常见问题和解决方案

  1. 模型加载问题:在将来的模型版本中,INCModel可能会被弃用,建议使用IPEXModel

  2. 网络限制:由于某些地区的网络限制,API访问可能不稳定。开发者可以考虑使用API代理服务提高访问稳定性。

总结和进一步学习资源

量化嵌入器在提高效率的同时,仍保持了较高的准确性,是文档嵌入的理想选择。想要深入学习嵌入技术,可以参考以下资源:

参考资料

  1. Optimum-Intel 文档
  2. Intel Pytorch Extension (IPEX)
  3. Transformers 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值