给定两个整数,被除数 dividend
和除数 divisor
。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend
除以除数 divisor
得到的商。
整数除法的结果应当截去(truncate
)其小数部分,例如:truncate(8.345) = 8
以及 truncate(-2.7335) = -2
示例 1:
输入: dividend = 10, divisor = 3 输出: 3 解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:
输入: dividend = 7, divisor = -3 输出: -2 解释: 7/-3 = truncate(-2.33333..) = -2
提示:
- 被除数和除数均为 32 位有符号整数。
- 除数不为 0。
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
class Solution {
public:
int divide(int dividend, int divisor) {
if(dividend ==0){
return 0;
} //边界条件的判断啊很重要很重要
if(divisor ==1){
return dividend; //除数与被除数的区别,在这里要好好地思考一下
}
if( divisor == -1){
if(dividend>INT_MIN) {
return -dividend ;// 只要不是最小的那个整数,都是直接返回相反数就好啦
}
else{
return INT_MAX;// 是最小的那个,那就返回最大的整数啦
}
}
long a = dividend;
long b = divisor;
int sign =1;
if((a<0&&b>0) || (a>0&&b<0)){
sign = -1;
}
if (a<0){
a =-a;
}
if(b <0){
b= -b;
}
int result = div (a,b);
if (sign ==-1){
return -result;
}
else{
return result;
}
}
int div(long a, long b){
if(a<b){
return 0;//递归退出条件
}
long count =1;
long tb = b; //在这里我们利用一个临时变量存储数据
while(tb+tb <= a){
count = count + count; //对 count 的值每次进行翻倍
tb = tb *2;// 对tb 的值,每次也进行翻倍
}
return count + div(a- tb,b); //递归处理
}
// 加油加油, Try to make yourself more excellent.
// 思路来源于 举个例子:11 除以 3 。
/*首先11比3大,结果至少是1, 然后我让3翻倍,就是6,发现11比3翻倍后还要大,那么结果就至少是2了,那我让这个6再翻倍,得12,11不比12大,吓死我了,差点让就让刚才的最小解2也翻倍得到4了。但是我知道最终结果肯定在2和4之间。也就是说2再加上某个数,这个数是多少呢?我让11减去刚才最后一次的结果6,剩下5,我们计算5是3的几倍,也就是除法,看,递归出现了。说得很乱,不严谨,大家看个大概,然后自己在纸上画一画,或者直接看我代码就好啦!
作者:liujin-4
链接:https://leetcode-cn.com/problems/divide-two-integers/solution/po-su-de-xiang-fa-mei-you-wei-yun-suan-mei-you-yi-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
*/
};