train_data和test_data同时,先归一化 再降维
归一化针对相同维度进行,
注意样本不均衡问题
归一化:
属于数据preprocess,比方:奇异样本数据(相对于其他输入样本特别大或特别小的样本矢量) 就需要规一化
1. mapminmax()
将矩阵的每一行归一到[-1 1].
[y,ps] = mapminmax(x1) %y=(ymax-ymin)*(x-xmin)/(xmax-xmin)+ymin;
其中y是对进行某种规范化后得到的数据,这种规范化的映射记录在结构体ps中。
并不是任何问题都需先对原始data归一化。【原始data规范化后,实际意味着你承认了一个假设:test数据集的每一模式的所有特征分量的max(min)不会大于(小于)train数据集的每一模式的所有特征分量的max(min),但这条假设显然过于牵强。使用平均值方差法也会有同样类似的问题。】
另一种观点:
当需要对另外一组数据做归一时,比如SVM 中的 training data用以上方法归一,而test data就可以用下面的方法做相同的归一了</