样本归一化

博客内容介绍了样本数据预处理中的归一化操作,强调了归一化在处理奇异样本和解决样本不均衡问题中的作用。讨论了mapminmax()函数的应用,以及在训练数据和测试数据间的归一化一致性。还提到了其他归一化方法如mapstd和processpca,并指出归一化在不同范围的意义,特别是在神经网络中与sigmoid函数的关系。
摘要由CSDN通过智能技术生成

train_data和test_data同时,先归一化 再降维

归一化针对相同维度进行,

注意样本不均衡问题


归一化:

属于数据preprocess,比方:奇异样本数据(相对于其他输入样本特别大或特别小的样本矢量)  就需要规一化



1.   mapminmax()

将矩阵的每一行归一到[-1 1].

 [y,ps] = mapminmax(x1)   %y=(ymax-ymin)*(x-xmin)/(xmax-xmin)+ymin;

其中y是对进行某种规范化后得到的数据,这种规范化的映射记录在结构体ps中。

并不是任何问题都需先对原始data归一化。【原始data规范化后,实际意味着你承认了一个假设:test数据集的每一模式的所有特征分量的max(min)不会大于(小于)train数据集的每一模式的所有特征分量的max(min),但这条假设显然过于牵强。使用平均值方差法也会有同样类似的问题。】


另一种观点:

当需要对另外一组数据做归一时,比如SVM 中的 training data用以上方法归一,而test data就可以用下面的方法做相同的归一了</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值