样本均值的抽样分布:
最高的是正峰态分布,中间的是正态分布,最低的是负峰态分布
正偏态分布,右尾长,负偏态分布,左尾长
样本容量越大,样本均值越趋近于总体均值
随着样本容量n趋近于无穷,样本均值的抽样分布趋于正态分布(标准差越小,图形越瘦,越凑近均值)(此时近似于正态分布的抽样分布,它的均值等于总体均值)(频率分布)
样本均值抽样分布的标准差通常称为均值标准差
(σ是原分布的标准差,是原分布的样本均值的抽样分布的标准差)(原分布可以是任何怪异的分布,没任何规律的无规则分布)
例题:每个男性平均在户外每天喝2L水,标准差是0.7L,你准备组织一个50人参加的户外活动,准备了110L水,水不够的概率是多少?
p(水不够的概率)=p(用水大于110L的概率)=p(平均每个用水大于2.2L的概率)
原分布:均值=2,σ=0.7
抽样分布:样本容量=50(近似于正态分布),样本均值=原分布均值=2,样本标准差=0.7/50^-1/2
求p(平均每个用水大于2.2L的概率),看2.2离均值有几个标准差,(2.2-2)/样本标准差=2.02(z分数)
即求p(该样本均值大于均值右侧2.02个标准差处的概率)
查z分数表(显示的是低于某值的概率)得知,低于2.02的概率是0.9783,因此,p(该样本均值大于均值右侧2.02个标准差处的概率)=1-0.9783(z值表有正有负,网上很容易查到)