样本均值的分布及中心极限定理

文章介绍了样本均值的分布特性,特别是在总体服从正太分布时的情况。当总体不一定是正太分布时,中心极限定理指出,随着样本量增大,样本均值的分布趋向于正太分布。文中通过台灯寿命检验的例子,展示了如何应用这些理论来验证制造商的声明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样本均值的分布及中心极限定理

样本均值的分布:

设X1,X2,X3,....Xn为从某一总体中抽出的随机样本,因此X1,X2,X3,....Xn为互相独立且与总体有相同分布的随机变量。现在要知道样本均值的分布(反复抽样,样本均值当然会服从一定的分布),首先要知道总体的分布。

当总体分布服从正太分布N(μ,σ2),样本均值的分布将服从:

上面的公式表明,的期望值与总体均值相同,而方差则缩小为总体方差的1/n。这说明当用样本均值去估计总体均值时,平均来说没有偏差,当n越来越大时,的散布程度越来越小,即用估计μ越来越准确。然而实际情况是,总体的分布并不总是正太分布或近似正太分布,此时的的分布也将取决于总体分布的情况。值得庆幸的是,当抽样个数n比较大时,人们证明了中心极限定理:设从均值为μ,方差为σ2的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ,方差为σ2/n的正太分布。

公式推导过程:

1. 的推导过程:

样本均值=平均值,因此可以将n提取出来:

样本均值的分布,由于是反复抽样,因此可以推导:

当n足够大时:

2. 的推导过程:

已经方差公式为:

样本均值方差公式:

将上一步获取的样本均值 带入:

提取出n:

合并后:

因为抽样样本是独立同分布的,因此协方差=0:

化简后:

实际案例:

某台灯供应商声称其生产的台灯具有均值为60个月,标准差为6个月的寿命分布。现假设质检部门决定检验该厂的说法是否正确,为此随机抽取50个该厂生产的台灯进行寿命检验。

1. 假定厂商声称是正确的,试求出50个台灯的平均寿命的抽样分布。

2. 假定厂商声称是正确的,则50个样本组成的样本的平均寿命不超过57个月的概率为多少?

1.根据中心极限定理可以推出50个台灯的平均寿命近似服从正太分布,其均值μ=60,方差σ2=62/50=0.72,σ=0.85。

即:

2.假定厂商声称是正确的,则50个样本组成的样本的平均寿命不超过57个月的概率为:

假定厂商声称是正确的,则50个台灯的平均寿命不超过57个月的概率为0.0002。概率这么低,根据小概率事件原理,肯定不可能发生了。相反,如果真的观测到50个台灯的平均寿命低于57个月,则有理由怀疑厂方说法的正确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MLPlatform

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值