样本均值的分布:
设X1,X2,X3,....Xn为从某一总体中抽出的随机样本,因此X1,X2,X3,....Xn为互相独立且与总体有相同分布的随机变量。现在要知道样本均值的分布(反复抽样,样本均值当然会服从一定的分布),首先要知道总体的分布。
当总体分布服从正太分布N(μ,σ2),样本均值的分布将服从:
上面的公式表明,的期望值与总体均值相同,而方差则缩小为总体方差的1/n。这说明当用样本均值
去估计总体均值时,平均来说没有偏差,当n越来越大时,
的散布程度越来越小,即用
估计μ越来越准确。然而实际情况是,总体的分布并不总是正太分布或近似正太分布,此时的的分布也将取决于总体分布的情况。值得庆幸的是,当抽样个数n比较大时,人们证明了中心极限定理:设从均值为μ,方差为σ2的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值
的抽样分布近似服从均值为μ,方差为σ2/n的正太分布。
公式推导过程:
1. 的推导过程:
样本均值=平均值,因此可以将n提取出来:
样本均值的分布,由于是反复抽样,因此可以推导:
当n足够大时:
2. 的推导过程:
已经方差公式为:
样本均值方差公式:
将上一步获取的样本均值 带入:
提取出n:
合并后:
因为抽样样本是独立同分布的,因此协方差=0:
化简后:
实际案例:
某台灯供应商声称其生产的台灯具有均值为60个月,标准差为6个月的寿命分布。现假设质检部门决定检验该厂的说法是否正确,为此随机抽取50个该厂生产的台灯进行寿命检验。
1. 假定厂商声称是正确的,试求出50个台灯的平均寿命的抽样分布。
2. 假定厂商声称是正确的,则50个样本组成的样本的平均寿命不超过57个月的概率为多少?
1.根据中心极限定理可以推出50个台灯的平均寿命近似服从正太分布,其均值μ=60,方差σ2=62/50=0.72,σ=0.85。
即:
2.假定厂商声称是正确的,则50个样本组成的样本的平均寿命不超过57个月的概率为:
假定厂商声称是正确的,则50个台灯的平均寿命不超过57个月的概率为0.0002。概率这么低,根据小概率事件原理,肯定不可能发生了。相反,如果真的观测到50个台灯的平均寿命低于57个月,则有理由怀疑厂方说法的正确性。