统计学中的真阳性(TP),假阴性(FN),假阳性(FP),真阴性(TN)怎么理解?

文章通过一个疾病检测的例子,解释了统计学中真阳性(TP)、假阴性(FN)、假阳性(FP)和真阴性(TN)的概念,以及它们在混淆矩阵中的作用。混淆矩阵用于评估分类器的性能,准确率和召回率是其关键指标,这两者往往存在权衡。在不同的应用场景中,如搜索和疾病监测,会根据需求侧重不同的指标。
摘要由CSDN通过智能技术生成

举个例子,假如要在一个地区进行1000人的疾病检测,我们站在上帝视角,知道这1000人中,有10人是疾病感染者,占比1%。

但实际的检测结果可能存在误差,误差包括两种情况

  1. 疾病感染者,被错误诊断为健康
  2. 身体健康,但却被错误诊断为感染者

对应了两种情况

  1. 检测出来的是阴性,就一定没有问题么?
  2. 检测出来阳性,就真的是阳性吗?

如上两种情况都属于误诊,需要用到贝叶斯公式来回答.

检测结果如下:

  1. 9名感染者得到了正确的阳性结果(TP,true positive),1人出现假阴性(FN,false negative).
  2. 其余990位健康的人中,检测除了89为假阳性(FP,false positive).901人得到了正确的阴性结果(TN,true negative)

图形化表示是这个样子的:

列成表格表示如下:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值