迎接AI时代,你准备好了吗?

本书深入探讨了ChatGPT的原理及影响,作者斯蒂芬·沃尔夫勒姆揭示了大模型如GPT在人工智能发展中的作用。文章介绍了从图灵测试到GPT-4的历程,强调了生成式AI与检索式AI的差异,并讨论了模型的‘幻觉’现象。文章还触及了AI的未来可能性,包括机器人和电影中描绘的AI与人类的关系。
摘要由CSDN通过智能技术生成

0a45ca2196d4e3a596a441a2e5b1389b.png

e812b6b2bd10d7665daa361992b5ad81.jpeg

Wolfram是当今活着的聪明的几个人之一,也是硬核的思考者之一,因为他解读世界的视角是数学和物理学的。他关于计算不可约性的思想,给此后无论如何发展的世界中的AI和人类的角色设定了互不毁灭的定律。Wolfram的历史地位将有可能比肩康德。这本书拨云见日,讲出了ChatGPT底层的原理以及谜团。没有人真正理解为什么语言模型这么厉害,但这本书能告诉你它们的底线在哪里。

——万维钢,科学作家

本书作者斯蒂芬·沃尔夫勒姆是英国著名的计算机科学家,人工智能领域的领军人物,非常有名的极客,被称为“在世的最聪明的人”。作为AI方面的顶级专家,由他写ChatGPT的科普读物,自然是最合适不过。

本书不厚,但却是我近期读到的AI大模型方面讲的最清晰透彻的一本读物。初学者要理解ChatGPT,读这一本书就够了。

d0fab246641a8ccca8655814fd06d2ce.png

2022年11月,美国人工智能研究公司OpenAI正式推出了对话交互式的ChatGPT。它甫一面世,立即风靡世界,席卷全球,这标志着AI进入了大模型时代。在ChatGPT的引领下,人类的一只脚,正开始迈入AI时代。

“从此刻开始,搜索的毛利率将永远、不可逆地进入下降轨道。”——萨提亚·纳德拉(Satya Nadella),微软公司首席执行官

1

人工智能与ChatGPT的发展

1950年,图灵发表了论文《计算机器与智能》(Computing Machinery and Intelligence),提到了著名的“图灵测试”,通常认为这是“机器学习(ML)”的第一个里程碑。

2006年,杰弗里·辛顿正式提出深度学习概念,这一年,被称为深度学习元年。

2016年3月,AlphaGo以4比1的成绩战胜了韩国围棋选手李世石,这是人工智能崭露头角的标志性事件。当时的AlphaGo版本结合了深度神经网络和蒙特卡洛树搜索算法。并没有用到GPT这样的大模型。

2018年,OpenAI发布了GPT-1。2020年6月,OpenAI发布了GPT-3。

2022年11月30日,在GPT-3模型基础上,OpenAI发布了ChatGPT。

7e5d841e9ce19dc02f49f5b6d816da99.png

2021年3月15日,OpenAI发布了GPT-4,目前提供给ChatGPT Plus订阅者使用。

2

大模型乱斗


GPT是一种大模型,是大规模预训练模型,可以简单理解为“大数据量AI模型”。它是指具有巨大参数数量和复杂结构的机器学习模型。这些模型通常由大量的神经网络层和参数组成,可以处理和学习大规模的数据集。大模型一次训练可能需要“高性能集群” 花费 “数天甚至数周”的时间。

大模型通常拥有天文数字的参数,在书中被称为“权重”。以GPT3.5为例,其参数为1750亿。

chatgpt一夜爆火后,国内外的企业纷纷跟进,各种大模型纷纷推出,微软、腾讯(派大星)、阿里、华为、百度(飞浆)都开发了自己的深度学习平台,对大模型进行训练。但是,在综合表现上,chatgpt仍然一骑绝尘。

微软推出的Turing-NLG,有170亿参数。

谷歌推出了号称有1.6万亿模型参数的switch transformer。

38b3c555912f6eed7c10fc097f8edbe5.jpeg

百度的“文心一言”

百度的“文心一言”有2650亿个参数。

浪潮信息的大规模预训练模型:源 1.0。参数量是 2457 亿。

659463ba0a55c5e4c1f99be1c1f5b87e.jpeg

科大讯飞的“讯飞星火认知大模型”

2023年5月6日,科大讯飞在成果发布会上正式发布了“讯飞星火认知大模型”。

2023年7月7日,华为发布了AI大模型——盘古3.0版本,参数量1000亿。

c00638d362d368f05f68690963611103.jpeg

阿里的“通义千问”

2023年4月11日,阿里正式推出大语言模型“通义千问”。

另外还有腾讯的混元大模型、京东的ChatJD大模型等等。

3

GPT是AI进化的产物

GPT用的预训练模型是生成式技术(Generative),采用自回归架构,单向预测,通过上文来推测下文,它永远只预测下一个字,这样不断循环来生成新的内容,我们称之为生成式AI。它采用极简架构,走大算力,大数据的技术路线。

2018年,GPT发布几个月后,谷歌发布了另外一种预训练模型BERT,称之为检索式AI,与GPT用的单向模型不同,它是双向的,通过检索语料库来生成回答。

检索式AI是在大数据量的基础上,让AI找到正确答案,而生成式AI是对于让AI自己去判断什么是正确答案,然后提供给用户。检索式AI做的是完型填空,而生成式AI做的是文字接龙。

在起初两种模型的博弈中,GPT1.0所用的生成式技术处于下风。生成式AI的效率和准确度远远低于检索式AI,人们在严肃的商业场合都在使用BERT,比如Siri。

到了GPT2.0的时候,事情突然现了转机。人们突然发现,在提高了数据量后,GPT居然无师自通地拥有了好几项技能,如文本摘要,如翻译。这说明,对于AI来说,生成式前途不可估量。

于是,OpenA公司在GPT模型上投入巨资,开发3.0。

某种能力在较小的模型中不存在,只在较大的模型中存在,模型规模必须要指数级增长超过某个临界点,新技能才会突飞猛进。

ChatGPT是通用预训练语言大模型。对于ChatGPT,有一件事乍看起来平平无奇,但是却细思极恐。我们知道,ChatGPT是通过文字用自然语言与人们交流的,这就要求它熟练掌握语法规则。如句子通常由主语、谓语和可能的宾语组成。名词前面可以有形容词,后面可以有动词,但是两个名词通常不会挨在一起。ChatGPT并不明确了解这些规则,我们也没有把这些规则输入到大模型中。但是在训练过程中,它自己发现了这些规则,并灵活地遵守它们。而我们并不清楚ChatGPT是如何做到这一点的。

目前GPT可以出色地生成文本,可是,我们并不能解释,为什么我们赋予的大模型能够起作用,我们也不能准确地指出,GPT是如何一步步工作的。我们所做的,只是提供大量的文本和一个近似的模型,然后,对它进行训练,就是看着GPT自我学习。而GPT哪一天到底学会了什么,我们无从知道,也无法预测。佛教有“渐悟”和“顿悟”,GPT是顿悟的,他的的新技能是突然“涌现”的,当模型规模(参数)突破某个临界点后,终于有一天,量变产生了质变,GPT进化了,这个进化的细节,我们无从得知。

凯文·凯利1994年所著的《失控:机器、社会与经济的新生物学》就讲到了这种关于复杂系统的进化、涌现和失控情况,失控的意思是,由于缺乏中心控制,群集系统是效率相对较低、不可预测、不可知、不可控的。但也由此获得进化的无限可能。按照凯文·凯利的理论,通过内部神经元的个体进化,我们可以获得模型整体能力的涌现。GPT作为人工智能神经网络大模型,也符合群集系统的特点。

在我们的训练下,AI正在自我进化。目前,GPT已经毫无征兆地学会了情感分析,那么,AI什么时候会有自主意识,什么时候会产生情感,我们并不知道,但是,我们知道,这件事早晚会到来。

4

AI幻觉与大模型造假

假如2030年大模型还没有创造太多经济价值,最有可能的解释便是其可靠性不足。我们先看一张图片:

2a1bb7d63429538190c849015970064e.png

在这里,我们让AI给我们提供一部有李鸿章角色的电影。我们发现,AI的回答驴唇不对马嘴。首先,并没有一部叫《风云天地》的电影,它介绍电影其实名叫《宋家皇朝》,但是,导演对不上,演员也不完全对。可以肯定的是,GPT一定有这部影片的相关资料,那么,它为什么会给出这种错误百出的答案,它在和我们开玩笑吗?

OpenAI发布了一篇《GPT-4技术报告》,里面重点提到了大模型的幻觉(Hallucination)。其中说GPT-4有产生幻觉的倾向,即“产生与某些来源无关的荒谬或不真实的内容”,“一本正经地胡说八道”,用我们易于理解的话来说,就是“杜撰”。也许,对于GPT,就和我们考试一样,遇到一时半会答不出的题,就算胡诌也得答上一大篇,能拿几分算几分。

微软必应聊天机器人团队中的一些专家则有下面看法,他认为认为幻觉等于创造力,大模型试图利用它掌握的所有数据,产生最连贯的句子,不管是对是错。AI就是在演戏,人类喜欢看什么,就演成什么样。关键他还演得特别像,特别一本正经,让人真假难辨。

AI幻觉对人类肯定是有害的,但是对于AI本身,也许是产生情绪、修改与智慧的必要途径。

5

你们都是虫子

ChatGPT是一种AI能力集成,它并不局限在文本对答,而是能够进入任何领域。

对于图片和声音,AI已经处理得游刃有余。AI已经学会了看图说话,理解图片中的意思,更可以按照人类给的指令生成图片,对于翻译和理解人类的声音,对于AI已经属于基本操作。

55a083c998d080ea2fa56e2edf081173.png

有理由相信,当我们给AI安上机器人的四肢和五官,AI就可以读懂和驱动世界,最后,AI可能会逐步发展出自己的世界。

那么,未来世界将会是怎样的?我们可以从以下几部影片中看看可能的方向。

5e1d6cf878e37d564a506e4bcc6def09.png

影片《机器管家(1999)》

在电影《机器管家》中,安德鲁是一台机器人,在主人马丁家中担任管家。他学会了绘画、写诗,憧憬爱情,渴望成为一个真正的人。在马丁家中,他过了两个世纪,不断进化,终于成为了一个真正的人,就在他被人类社会认可的时候,他去世了,而死亡也是人与AI的区别之一。

6bd9ff38c224d168e3413748a167a49e.png

影片《人工智能(2001)》,斯皮尔伯格导演

在电影《人工智能》中,机器人大卫是一个小男孩,被人类家庭抛弃。他一直希望成为一个真正的孩子,希望真正地被爱。为了实现这个愿望,他踏上了冒险的旅程。二千年后,人类已经灭亡,外星人发现了他,将他视为一个传奇的存在,提取了他的记忆,为他制造了完美的一天。

在上面的影片中,AI对人类没有恶意,并且爱护和守护着人类,也渴望成为人类。著名的科幻小说作家艾萨克·阿西莫夫创造了“机器人三大定律”,如果机器人不遵守这三大定律呢,在机器人眼中,是不是会象三体人看地球人那样认为“你们都是虫子”呢?

532830e9137c3dcf27bbff33cf0195a6.png

影片《机械姬(2014)》

在电影《机械姬》中,通过了图灵测试的AI,在谋杀了实验室的全部工作人员后,成功地逃了出去,融入了人类社会。

1338f1d7549863349a78c25bc6497190.png

电影《终结者(1984)》,导演詹姆斯·卡梅隆,主演施瓦辛格

在电影《终结者》中,称为“天网”(Skynet)的机器人AI控制着一支强大的军队,试图灭绝人类。

6

本书作者

本书的英文版书名《What Is ChatGPT Doing ... and Why Does It Work?》,2023年3月9日出版,112页。

本书作者沃尔夫勒姆认为自然界是用编程语言写的,基于此,2009年,他设计了计算型知识引擎 Wolfram Alpha 。这是是一款在线自动问答系统,用户用自然语言对它提问,它可以自主生成答案,而不是像其他的搜索引擎一样返回相关网页的链接。它一出现,就被称为“Google终结者”。

20d79211a7647d7dce4d9acaae65821d.png

Wolfram Alpha的页面

Wolfram Alpha 是微软的必应和苹果公司的Siri后台所使用的问答系统之一。

沃尔夫勒姆开发了Wolfram语言作为新型普适性多模态编程语言,主要用于科学计算和技术应用。在2014年的电影《星际穿越》中黑洞的引力透镜将就是用这个语言实现的,在2016年的科幻电影《降临 Arrival》中,Wolfram 语言参与了外星语言的设计创造。

40422c4a79ead544208e52f121c670c2.jpeg

电影《降临(2016)》中能通晓过去未来的外星语言

随着ChatGPT等人工智能技术的发展,人机交互将变得更加智能化和自然化。这可能会改变我们与计算机和机器的交互方式,让人们更容易与技术进行沟通和协作。ChatGPT等人工智能技术的出现为人类带来了许多机遇和挑战。关键在于我们如何理智地应用和管理这些技术,以确保其对人类社会的影响是积极和可持续的。

  推荐阅读

1feba7fb562bbc0f4a90c64cefde8a78.png

作者:[美] 斯蒂芬·沃尔弗拉姆(Stephen Wolfram)

译者:WOLFRAM传媒汉化小组

国内首部由世界顶级 AI 学者、科学和技术领域重要的革新者、“第一个真正实用的人工智能”搜索引擎WolframAlpha发明人斯蒂芬·沃尔弗拉姆对 ChatGPT 最本质的原理的解释的权威之作!

OpenAI CEO,ChatGPT 之父山姆·阿尔特曼、世界顶级的 AI 学者,机器人界的巨擘,MIT 教授,多家知名机器人公司创始人,美国工程院院士罗德尼·布鲁克斯、量子位联合创始人,总编辑李根、科学作家,“得到”APP《精英日课》专栏作者万维钢联袂推荐。

63a5d339bfb444ae07d3e98871e78150.png

e5f451bc55031dea4aca3fd1e7773233.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值