DeepSeek 霸榜,AI 太卷,程序员该读点啥?

最近,DeepSeek 以惊人速度席卷全球技术圈头条,直接拉高了 AI 竞赛的门槛。与此同时,AI 图书在各大平台销量榜上持续霸榜,去年年初爆火的《大模型应用开发极简入门》更是强势重回京东销量排行榜第一名。

024d4b0a5c02e840f3567c28a2169979.jpeg

AI 迭代太快,但掌握好底层知识依旧是抵抗焦虑的最好办法。不少开发者也都在问:我该如何提升?

与其焦虑,不如行动!今天小图为大家梳理了一条大模型的系统学习路线,推荐了一些计算机与 AI 领域的硬核图书,涵盖基础、进阶与高阶知识,助你打牢根基、精进技能,探索 AGI。

 数学基础 

图片

《程序员的数学》(系列全四册)

深入浅出,内容涵盖程序员编程中需要掌握的数学知识,这本书从数学基础讲起,再到概率统计,线性代数等热门内容,帮助你掌握编程所需的基础数学知识和数学思维。内容包括机器学习、数据挖掘、模式识别等,作为大模型入门数学知识补充教程,这套书真是太实用了。

图片

《程序员数学:用Python学透线性代数和微积分》

保罗·奥兰德|著

百度KFive|译

数学拥有无穷的力量。它既帮助游戏开发工程师建模物理世界,也帮助量化金融分析师赚取利润,还帮助音频处理工程师制作音乐。在数据科学和机器学习领域,数学知识更是不可或缺的。

本书以图文结合的方式帮助你用 Python 代码解决程序设计中的数学问题。通过边学边练,你会发现线性代数和微积分的重要概念跃然纸上、印在脑中。

图片

《深度学习的数学》

[日]涌井良幸、涌井贞美|著

杨瑞龙|译

一本书掌握深度学习的数学基础知识!结合 235 幅插图和大量示例,基于 Excel 实践,直击神经网络根本原理。

图片

《普林斯顿微积分读本(修订版)》

【美】阿德里安·班纳|著

杨爽,赵晓婷,高璞|译

豆瓣评分 9.6,入门微积分最好的一本书。内容阐述了曼哈顿微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解题的能力。

 Python编程与框架 

图片

《Python编程:从入门到实践(第3版) 》

[美]埃里克·马瑟斯 | 著

袁国忠 | 译

大模型时代必读的 Python 入门圣经,影响全球超过 250 万读者,长居 Amazon、京东等网店编程类图书榜首,真正零基础,附赠随书代码+配套视频讲解+速查手册,自学无压力。

 PyTorch框架 

fcc71154c4396519b2f85cc60d289dc9.png

《深度学习原理与PyTorch实战(第2版)》

集智俱乐部 | 著

本书是一本系统介绍深度学习技术及开源框架 PyTorch 的入门书。书中通过大量案例介绍了 PyTorch 的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。

 机器/深度学习 

图片   

《Python机器学习基础教程》

Andreas C. Müller   Sarah Guido | 著

张亮(hysic)| 译

scikit-learn 库维护者和核心贡献者作品。内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。

图片

《深度学习入门:基于Python的理论与实现》

斋藤康毅 | 著

陆宇杰 | 译

豆瓣评分 9.5,深度学习真正意义上的入门书,对初学者友好,内容深入浅出地剖析了深度学习的原理和相关技术。书中使用 Python 3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。

图片

《深入浅出神经网络与深度学习》

迈克尔·尼尔森 | 著

朱小虎  | 译

知名计算机科学家 Michael Nielsen 作品,哈工大研究生课程参考书,李航、马少平等多位业内专家推荐。深入讲解神经网络和深度学习技术,侧重于阐释深度学习的核心概念。作者以技术原理为导向,辅以贯穿全书的 MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。学完本书,读者将能够通过编写 Python 代码来解决复杂的模式识别问题。

 自然语言处理 

图片

《深度学习进阶:自然语言处理》

[日]斋藤康毅 | 著

陆宇杰 | 译

豆瓣评分 9.4 的畅销书,”鱼书“系列第 3 部,带你快速直达自然语言处理领域!本书内容精炼,聚焦深度学习视角下的自然语言处理,延续前作的行文风格,采用通俗的语言和大量直观的示意图详细讲解,帮助读者加深对深度学习技术的理解,轻松入门自然语言处理。

图片

《自然语言处理入门》

何晗|著

Java 与 Python 双实现,零起点上手自然语言处理。本书汇集作者多年经验,从基本概念出发,逐步介绍中文分词、词性标注、命名实体识别、信 息抽取、文本聚类、文本分类、句法分析这几个热门问题的算法原理与工程实现。书中通过对多种算法的讲解,比较了它们的优缺点和适用场景,同时详细演示生产级成熟代码,助你真正将自然语言处理应用在生产环境中。

 强化学习 

图片

《深度学习入门4:强化学习》

斋藤康毅 | 著

郑明智 | 译

豆瓣评分 9.8,深受读者喜爱的“鱼书”系列第四弹,深度学习入门经典,从零开始掌握强化学习。沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。

图片

《深度强化学习》

王树森 黎彧君 张志华 | 著

系列视频课全网播放量 100 万+,涵盖最近 10 年最重要的深度强化学习方法,围绕实用、精简两大原则,专注核心知识,成书篇幅仅 312 页,超轻松入门 DRL!全彩印刷,原创 140 多幅精美全彩插图,上市一周登上京东新书销量排行榜第一,口碑、内容兼具。

 大模型从基础到应用 

图片

《BERT基础教程》

苏达哈尔桑·拉维昌迪兰|著

周参|译

详细讲解十余种 BERT 变体的原理,本书聚焦谷歌公司开发的 BERT 自然语言处理模型,由浅入深地介绍了 BERT 的工作原理、BERT 的各种变体及其应用,书中用简单的文字清晰阐释 BERT 背后的复杂原理,让你轻松上手 NLP 领域的里程碑式模型。

图片

《大模型应用开发极简入门》

[比] 奥利维耶·卡埃朗,[法] 玛丽–艾丽斯·布莱特 | 著

何文斯|译

本书为大模型应用开发极简入门手册,为初学者提供了一份清晰、全面的“最小可用知识”,带领大家快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。通过本书,你不仅可以学会如何构建文本生成、问答和内容摘要等初阶大模型应用,还能了解到提示工程、模型微调、插件、LangChain 等高阶实践技术。书中提供了简单易学的示例,帮你理解并应用在自己的项目中。此外,书后还提供了一份术语表,方便你随时参考。

图片

《LangChain编程:从入门到实践》

李多多(@莫尔索)| 著

教你利用 LangChain 简化大模型应用开发,本书深入解析 LangChain 六大组件:模型输入/输出、检索、链、记忆、代理与回调,全方位掌握核心功能。从 0 到 1 构建多模态智能机器人,理论结合实践,轻松开启大模型应用之旅。随书附赠详尽示例代码,快速上手,轻松驾驭大模型技术。讲解细致入微,学习路径清晰明了,与时俱进,助你成为大模型应用开发达人。

图片

《大模型辅助软件开发:方法与实战》

张刚 | 著

本书围绕一个真实的案例展开,完整记录了一个融合专业技能和大模型能力的软件开发过程,真正从 0 到 1,介绍如何基于坚实的专业基础,借助大模型,实现从业务探索、需求分析、架构设计、编码实现到上线运行的完整过程,展示了大模型支持端到端软件开发的可行性。

图片

《ChatGPT高效提问:prompt技巧大揭秘》

李世明 代旋 张涛 | 著

ChatGPT 的横空出世昭示了通用人工智能的可能性,并为我们提供了更加便捷、直观和个性化的信息获取方式,有望在教育、研究、咨询和日常生活中发挥重要作用。而驾驭 ChatGPT,使之更好地服务于我们的工作和生活,需要一些技巧和方法,这就是本书要探讨的 prompt(提示)工程。 

本书以通俗易懂的语言,详细介绍了如何编写高质量的提示,引导 ChatGPT 输出优质答案,满足各种信息需求。书中包含详细解释和丰富示例,旨在帮助读者掌握利用 ChatGPT 解决各种问题的实用技能。

快来开启你的 AI 学习之旅吧,这些书将成为你高效入门的最佳助手!

扫码啦!一起进群学习~👇

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值