Python实现数据可视化:从数据来源到完整代码教程

一、数据的来源与意义

数据来源:在本教程中,我们使用开源的数据集“COVID-19全球确诊病例数”。该数据集来自约翰斯·霍普金斯大学公开的数据,包含了全球不同国家和地区在不同时间点的确诊病例数。

数据意义:该数据集记录了从COVID-19疫情爆发到目前为止的全球确诊病例数,通过可视化可以帮助我们了解疫情的发展趋势、各国疫情的严重程度以及防控措施的效果。

二、代码环境与运行平台

开发环境:推荐使用Jupyter Notebook、Visual Studio Code(VS Code)或PyCharm等Python编程软件。在这些平台上可以方便地运行Python代码、展示数据可视化图表。

所需库:我们将使用以下Python库:

  • Pandas:用于数据处理和分析。
  • Matplotlib:用于基本的绘图。
  • Seaborn:用于创建更高级的统计图形。

安装这些库:

pip install pandas matplotlib seaborn

三、数据加载与处理

1. 加载数据

我们首先从网络上获取COVID-19数据集,可以直接使用已下载的CSV文件。假设文件名为covid19_data.csv

import pandas as pd

# 加载COVID-19数据集
data = pd.read_csv('covid19_data.csv')
data.head()
2. 数据结构与处理

查看数据集的前几行,确保数据加载成功,并了解数据结构。假设数据集包含以下列:

  • Country/Region:国家/地区名称
  • Date:日期
  • Confirmed:确诊病例数
  • Deaths:死亡病例数
  • Recovered:康复病例数
# 查看数据的基本信息
print(data.info())

# 将日期列转换为日期格式
data['Date'] = pd.to_datetime(data['Date'])
3. 数据筛选

我们可以选择几个国家的数据进行展示,以便观察这些国家的疫情趋势。这里我们选择“美国”、“印度”和“巴西”。

# 筛选出美国、印度、巴西的确诊病例数据
selected_countries = ['US', 'India', 'Brazil']
country_data = data[data['Country/Region'].isin(selected_countries)]

四、可视化实现

接下来,我们通过可视化呈现COVID-19确诊病例的趋势。

1. 绘制时间序列图

使用MatplotlibSeaborn绘制确诊病例的时间序列图,以观察疫情在不同国家的变化趋势。

import matplotlib.pyplot as plt
import seaborn as sns

# 设置Seaborn主题
sns.set(style="whitegrid")

# 绘制时间序列图
plt.figure(figsize=(14, 7))
for country in selected_countries:
    country_df = country_data[country_data['Country/Region'] == country]
    plt.plot(country_df['Date'], country_df['Confirmed'], label=country)

# 添加标题和标签
plt.title("COVID-19 Confirmed Cases Over Time")
plt.xlabel("Date")
plt.ylabel("Confirmed Cases")
plt.legend(title="Country")
plt.xticks(rotation=45)
plt.show()

代码解析

  • plt.plot():绘制时间序列图,x轴为日期,y轴为确诊病例数。
  • plt.legend():在图表上添加图例,以区分不同国家的数据。
2. 绘制累计死亡病例柱状图

接下来,我们绘制这些国家的累计死亡病例柱状图,以了解疫情的严重性。

# 获取最新日期的数据
latest_data = country_data[country_data['Date'] == country_data['Date'].max()]

# 绘制柱状图
plt.figure(figsize=(10, 6))
sns.barplot(data=latest_data, x='Country/Region', y='Deaths', palette="viridis")
plt.title("COVID-19 Deaths in Selected Countries (Latest Data)")
plt.xlabel("Country")
plt.ylabel("Deaths")
plt.show()

代码解析

  • sns.barplot():绘制柱状图,x轴为国家,y轴为死亡病例数。
  • palette="viridis":设置颜色主题,便于图表的可读性。
3. 绘制恢复率饼图

绘制恢复率的饼图可以让我们直观了解不同国家的康复比例。

# 计算恢复率
latest_data['Recovery Rate'] = latest_data['Recovered'] / latest_data['Confirmed'] * 100

# 绘制饼图
plt.figure(figsize=(8, 8))
plt.pie(latest_data['Recovery Rate'], labels=latest_data['Country/Region'], autopct='%1.1f%%', startangle=140)
plt.title("COVID-19 Recovery Rate in Selected Countries")
plt.show()

代码解析

  • plt.pie():绘制饼图,展示恢复率。
  • autopct='%1.1f%%':设置显示百分比,保留1位小数。

五、总结

通过本教程,我们实现了COVID-19数据的加载、处理与可视化,涵盖了多个国家的确诊病例趋势、死亡人数及恢复率。以上图表能帮助我们直观地了解不同国家的疫情现状和趋势,展示了数据可视化在疫情数据分析中的强大作用。

以下是本教程的关键步骤总结:

  1. 数据加载与处理:读取数据文件并进行必要的数据清洗和转换。
  2. 可视化实现:通过Matplotlib和Seaborn创建多个图表,展示数据趋势和统计信息。
  3. 结果分析:从图表中分析疫情发展趋势和不同国家疫情严重程度。

希望本教程帮助你了解如何在Python中进行数据可视化。如果你希望进一步分析数据,可以尝试加入更多国家或细化图表内容,例如不同时间段的增长率分析等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏小简

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值