/*
by:txwtech
膨胀与腐蚀:
作用:可以排除一些干扰,具体看图片处理效果
形态学操作(morphology operators)-膨胀
图像形态学操作 – 基于形状的一系列图像处理操作的合集,主要是基于集合论基础上的形态学数学
形态学有四个基本操作:腐蚀、膨胀、开、闭
膨胀与腐蚀是图像处理中最常用的形态学操作手段
形态学操作-腐蚀
腐蚀跟膨胀操作的过程类似,唯一不同的是以最小值替换锚点重叠下图像的像素值
取每个位置领域内的最小值,灰度较暗的区域面积随着增大,灰度较亮的区域面积就会减小
最小值:指的像素点的值,值越小越暗
形态学操作-膨胀(用最大的像素值替换中心像素)
取每个位置领域内的最大值,图像输出总体亮度比原图亮,图像中较亮物体的尺寸会变大,较暗物体的尺寸会减小,甚至消失
最大值:指的像素点的值,值越大越亮
跟卷积操作类似,假设有图像A和结构元素B,结构元素B在A上面移动,
其中B定义其中心为锚点,计算B覆盖下A的最大像素值用来替换锚点的像素,
其中B作为结构体可以是任意形状
//膨胀,黑圆右侧有些小点,通过膨胀,可以去除干扰
API:
getStructuringElement(int shape, Size ksize, Point anchor)
- 形状 (MORPH_RECT \MORPH_CROSS \MORPH_ELLIPSE)
- 大小
- 锚点 默认是Point(-1, -1)意思就是中心像素
dilate(src, dst, kernel)
erode(src, dst, kernel)
*/
/*
by:txwtech
膨胀与腐蚀:
作用:可以排除一些干扰,具体看图片处理效果
形态学操作(morphology operators)-膨胀
图像形态学操作 – 基于形状的一系列图像处理操作的合集,主要是基于集合论基础上的形态学数学
形态学有四个基本操作:腐蚀、膨胀、开、闭
膨胀与腐蚀是图像处理中最常用的形态学操作手段
*/
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
Mat src;
Mat src2;
Mat src2a;//
Mat dst2;
Mat dst2a;
//设置结构元素大小
int element_size = 3;
int max_size = 21;
void CallBack_Demo(int, void*);//方法,函数
void CallBack_Demo2(int, void*);//方法,函数
char win_title[] = "原图";
char win_title1[] = "原图2";
char win_title2[] = "腐蚀的图";
char win_title3[] = "膨胀的图2";
int main(int argc, char *argv[])
{
src = imread("E:\\pictures\\cow1a.jpg",CV_LOAD_IMAGE_ANYCOLOR);
src2 = imread("E:\\pictures\\腐蚀sample.jpg", CV_LOAD_IMAGE_GRAYSCALE);
if (!src.data)
{
printf("src failed to load image");
return -1;
}
if (!src2.data)
{
printf("src2 failed to load image");
return -1;
}
namedWindow(win_title,CV_WINDOW_AUTOSIZE);
namedWindow(win_title2, CV_WINDOW_AUTOSIZE);
namedWindow(win_title1, CV_WINDOW_AUTOSIZE);
namedWindow(win_title3, CV_WINDOW_AUTOSIZE);//腐蚀的图2
imshow(win_title, src);
imshow(win_title1, src2);
createTrackbar("Element Size:", win_title2,&element_size,max_size,CallBack_Demo);
createTrackbar("Element Size:", win_title3, &element_size, max_size, CallBack_Demo2);//腐蚀的图2
CallBack_Demo(0,0);
CallBack_Demo2(0, 0);
//实现反色显示
src2.copyTo(src2a);
int height = src2a.rows;
int width = src2a.cols;
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
int gray_value = src2a.at<uchar>(row,col);
src2a.at<uchar>(row, col) = 255 - gray_value;
}
}
namedWindow("反色显示",CV_WINDOW_AUTOSIZE);
imshow("反色显示", src2a);
waitKey(0);
return 0;
}
void CallBack_Demo(int, void*)
{
int s = element_size * 2 + 1;
Mat structureElement = getStructuringElement(MORPH_RECT,Size(s,s),Point(-1,-1));
//膨胀
//dilate(src,dst2,structureElement,Point(-1,-1),1);
//腐蚀
erode(src,dst2,structureElement);//
imshow(win_title2, dst2);
return;
}
void CallBack_Demo2(int, void*)
{
int s = element_size * 2 + 1;
Mat structureElement = getStructuringElement(MORPH_RECT, Size(s, s), Point(-1, -1));
//膨胀,黑圆右侧有些小点,通过膨胀,可以去除干扰
dilate(src2,dst2a,structureElement,Point(-1,-1),1);
//腐蚀
//erode(src2, dst2a, structureElement);
imshow(win_title3, dst2a);
return;
}