DSSM框架(Deep Structured Semantic Model):深度学习计算语义相似度

本文介绍了DSSM(Deep Structured Semantic Model)框架,利用点击数据训练模型,计算文本间的语义相似度。通过输入层的word hashing和深度网络结构,降维生成低维语义向量,并使用余弦距离计算相似度。DSSM的优势在于减少切词依赖,提高模型泛化能力,但缺点是丢失语序信息。后续模型如CNN-DSSM和LSTM-DSSM对此进行了改进。
摘要由CSDN通过智能技术生成

原文地址:DSSM框架(Deep Structured Semantic Model):深度学习计算语义相似度,现在搬运到CSDN~

欢迎关注我的公众号,微信搜 algorithm_Tian 或者扫下面的二维码~

现在保持每周更新的频率,内容都是机器学习相关内容和读一些论文的笔记,欢迎一起讨论学习~


文章:

Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// ACM International Conference on Conference on Information & Knowledge Management. ACM, 2013:2333-2338.

两篇写得很好的博客,有助于理解:

https://cloud.tencent.com/developer/article/1005600

http://kubicode.me/2017/04/21/Deep%20Learning/Study-With-Deep-Structured-Semantic-Model/

有个博主自己写的代码:

https://github.com/InsaneLife/dssm

文章理解起来并不难,对于没有NLP基础的读者比较友好。主要是设计了一个深度网络结构来计算文本之间的相似度。这几篇博客对文章讲解得很详细了,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值