波束雷达多目标跟踪的自适应波束调度算法研究(一)

一、背景介绍

在现代雷达系统中,敏捷波束雷达因其能够迅速调整波束方向,从而实现对多个目标的快速、准确跟踪而备受关注。然而,当雷达系统需要同时跟踪多个目标时,特别是在目标数量多、机动性强、环境复杂的情况下,多目标跟踪问题变得尤为复杂和具有挑战性。

首先,多目标跟踪需要雷达系统具备高效的目标检测能力。在复杂的电磁环境中,雷达系统需要准确地区分信号和噪声,以及不同目标反射的回波信号。这需要雷达系统具备先进的信号处理技术,以确保在多个目标同时存在时,能够准确地识别并跟踪每一个目标。

其次,多目标跟踪还需要考虑目标的机动性和不确定性。在实际应用中,目标可能会进行突然的机动,如加速、减速、转向等,这些机动会导致目标状态的变化,从而增加跟踪的难度。此外,由于测量误差、目标遮挡、环境干扰等因素的存在,雷达系统对目标状态的估计也会存在一定的不确定性。

针对这些问题,敏捷波束雷达需要采用先进的跟踪算法和技术来应对。一种有效的策略是采用自适应波束调度算法,该算法可以根据目标的运动状态和估计误差,动态地调整雷达波束的指向和参数,以优化对多个目标的跟踪效果。此外,还可以结合交互多模型卡尔曼滤波器(IMMKFs)等高级跟踪滤波器,来更准确地估计目标的状态和轨迹。

总之,敏捷波束雷达多目标跟踪问题是一个涉及信号处理、目标检测、目标跟踪等多个领域的复杂问题。为了解决这一问题,需要综合运用先进的雷达技术、信号处理技术和跟踪算法,以实现对多个目标的快速、准确跟踪。

二、卡尔曼滤波

(1) 卡尔曼滤波数学模型

卡尔曼滤波器是一组数学方程,它提供了一种有效的计算(递归)方法来估计过程u_{k-1}的状态,以最小化平方误差的平均值。卡尔曼滤波器在几个方面非常强大:它支持对过去、现在甚至未来状态的估计,并且即使在建模系统的确切性质未知的情况下,它也可以这样做。

卡尔曼滤波器解决了一个一般问题,即试图估计一个由线性随机差分方程控制的离散时间控制过程的状态:

x_k=Ax_{k-1}+Bu_{k-1}+w_{k-1}

测量值z_k=Hx_k+v_k

A,一个n\times n矩阵,是前一个时间𝑘−1步到当前状态𝑘的状态转移矩阵。

B,一个n \times l矩阵,为可选的控制输入u_{k-1}的控制输入矩阵。

𝐻,矩阵𝑚×𝑛是将状态转换为测量域的变换矩阵。

随机变量w_kv_k分别表示过程噪声和测量噪声。假设它们是独立的白噪声,并具有正态概率分布:

𝑝(𝑣) ∼ 𝑁(0, 𝑅) ; 𝑝(𝑤) ∼ 𝑁(0,𝑄)

卡尔曼滤波器通过使用一种反馈控制形式来估计过程:滤波器估计过程在某一时刻的状态,然后以(噪声)测量的形式获得反馈。因此,卡尔曼滤波器的方程分为两组:时间更新方程和测量更新方程。时间更新方程负责(及时地)向前投射当前状态和误差协方差估计,以获得下一个时间步骤的先验估计。测量更新方程负责反馈,即将新的测量并入先验估计以获得改进的后验估计。

(2) 预测阶段

在时间更新方程中,我们将计算预测状态估计(先验状态估计) {\hat{x}}_{k}^{-}  和预测误差协方差(先验误差协方差估计)P_{k}^{-}。首先,使用状态动态方程模型预测先验状态估计值{\hat{x}}_{k}^{-},该模型在时间上向前投影如下:

{\hat{x}}_{k}^{-} = A {\hat{x}}_{k-1} +B u_{k-1}

其中,{\hat{x}}_{k-1}^{-}为之前估计的状态(后验状态估计)。接下来,误差协方差矩阵P_{k}^{-}的预测公式为:

P_k^{-}=AP_{k-1}A^T+Q

(3)更新阶段

在更新阶段,我们计算卡尔曼增益K_k如下:

S_k=HP_k^{-}H^T+R

K_k=P_k^{-}H^TS_k^{-1}

其中𝑅为测量噪声协方差。之后我们进行实际测量,S_k是残差的不确定度(协方差)。为了更新预测的状态估计值x_k^{-},我们需要测量测量残差。残差是真实测量值z_k与之前估计的测量值H\hat{x}_k^{-}的差值,因此测量残差为z_k-H\hat{x}_k^{-}。为了更新状态估计\hat{x}_k,首先要对之前预测的状态估计 {\hat{x}}_{k}^{-},与卡尔曼增益(Kalman gain)和测量残差(measurement residual)的乘积相加。:

\hat{x}_k=\hat{x}_k^{-}+K_k\left ( z_k-H\hat{x}_k^{-} \right )

在获得更新后的状态估计后,过滤器计算更新后的误差协方差,这将在下一个时间步骤中使用。

P_k=\left ( I-K_kH \right )P_k^{-}

三、IMMKFs

IMMKFs估计器的基本原理是运行一组卡尔曼滤波器,对应于一些未知的模型参数,随后,每个滤波器的估计基于每个滤波器的概率进行融合,通常使用它们的误差残差和协方差计算。该算法主要包括滤波、模式概率更新、状态组合和滤波器交互四个步骤。

在IMMKF(交互式多模型卡尔曼滤波器)中,一组KF(卡尔曼滤波器)被并行运行以提供对某个状态或参数的估计\hat{x}_k^{j}。每个滤波器都关联于一个特定的模式,并且每个滤波器都有自己针对该模式的概率\mu _k^j , j\in \left \{ \left. 1,2,...,r \right \} \right.。这里的模式概率代表了滤波器在给定模式下提供准确状态估计的可能性。这些模式概率是从滤波器的可能性中更新的,假设测量残差服从高斯分布,每个滤波器会计算一个似然性(即测量值在给定模型下出现的概率)。

\Lambda _k^j=\frac{1}{\sqrt{2\pi det\left (S_k^j \right )}}e^{-\frac{1}{2}(\hat{z}_k^j)^T(S_k^j)^{-1}\hat{z}_k^j}

作用:似然性量化了观测数据与模型或模式之间的匹配程度。如果观测数据与某个模型或模式非常匹配,则该模型或模式的似然性会很高。

\hat{z}_k^j=z_k^j-H\hat{x}_k^{-}为为噪声测量值与先验估计值之间的残差。

模式概率的更新(后验概率)

基于贝叶斯定理,每个模式的概率会根据新的观测数据(即测量值)进行更新计算了给定新观测下每个模式的后验概率,该概率是模式的先验概率和似然性的乘积,并归一化所有模式的概率之和为1。

\mu_k^j=\frac{\mu_k^j\Lambda _k^j}{\sum_{j=1}^{r}\mu_k^j\Lambda _k^j}

每个卡尔曼滤波器都根据自身的模式和先验估计(从之前的循环或初始化得到)进行状态预测。状态预测是卡尔曼滤波器工作的基础,它利用系统模型和上一时刻的状态估计来预测当前时刻的状态。

IMMKFs估计器的输出(状态 {\hat{x}}_{k} 和误差协方差 P_{k})是通过结合每个滤波器的加权估计值 \hat{x}_k^{j} 和状态误差协方差  P_{k}^{j} 来计算的,定义如下:

{\hat{x}}_{k}=\sum_{j=1}^{r}\mu_k^j\hat{x}_k^{j}

P_k=\sum_{j=1}^{r}\mu_k^j \left [ P_k^{(j)}+\left ( \hat{x}_k - \hat{x}_k^{j}) (\hat{x}_k - \hat{x}_k^{j}\right )^T \right ]

描述了如何使用加权的方式结合每个滤波器的估计值和状态误差协方差,以得到整体的估计值和误差协方差。这里的权重就是更新后的模式概率(后验概率)。过滤器的相互作用是具有较高概率的过滤器修改具有较低概率的过滤器的估计。

预测下一周期的模式概率(先验概率)

先验概率是在看到新的观测数据之前,对某个模式(或假设)的置信度。在IMMKF中,这通常基于模式转移概率(transition probabilities)和上一个时间步的后验概率来计算。在更新完当前周期的模式概率后,需要预测下一周期(即下一个时间步)的模式概率。这是因为随着时间的推移,系统的状态可能会发生变化,因此模式之间的转移概率(也称为模式转移矩阵)需要被考虑进来。

这一步对于具有时变不确定参数的系统尤为重要。不太可能的过滤器使用更好的状态和误差协方差进行更新,因此,对模型参数的变化产生更快的响应。在IMMKFs中,每个滤波器被视为一个模态,模态的切换过程由一个定常马尔可夫链来建模。模态转移概率 \pi _{ij} 描述了模态i 转移到模态j的可能性。

\mu_{k+1}^{j-}=\sum_{j=1}^{r}\pi_{ij}\mu_k^j

随后,根据贝叶斯定理,模态i 转移到模态j的混合模权值计算如下:

\mu_{k}^{\left ( i|j \right )-}= \frac{\pi_{ij}\mu_k^j}{\sum_{j=1}^{r}\pi_{ij}\mu_k^j}

\hat{x}_{k}^{j-}=\sum_{i=1}^{r}\mu_{k}^{\left ( i|j \right )-}\hat{x}_k^{i-}

P_k^{j-}=\sum_{i=1}^{r}\mu_k^{\left ( i|j \right )-}\left [ P_k^{i-}+\left (\hat{x}_k^{j}-\hat{x}_k^{i-} \right )\left (\hat{x}_k^{j}-\hat{x}_k^{i-} \right ) ^T \right]

  • 29
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值