光谱重建
文章平均质量分 86
tony365
树大招风
展开
-
光谱重建In Defense of Shallow Learned Spectral Reconstruction from RGB Images, svd和k-svd
首先有一个数据库,数据库包含低分辨率图像的像素或特征,和对应高分辨率图像的像素或者提取的特征输入低分辨率的patch,提取特征,找到数据库中的K近邻,并根据距离计算weight将weight应用到对应的高分辨率的patch, 加权得到 高分辨率的patch主要就是K近邻插值一般情况下使用K-SVD方法建立 低分辨率字典和对应的高分辨率字典输入低分辨率图像,然后OMP方法计算 低分辨率字典的weightweight应用到低分辨率字典对应的高分辨率字典,得到高分辨率图像。原创 2024-04-25 11:17:09 · 830 阅读 · 0 评论 -
光谱重建: rgb响应曲线估计(已知光源 和 多种颜色反射率已知,对应的rgb值也已知)
因此作者首先 对 rgb响应数据库 降维,分解为 特征值 和 特征向量, 用低维特征就可以表示响应曲线。本文作者提出一个方案, 在已知光源和反射率的基础上,最小二乘求解rgb相应曲线。已知光源 和 反射率 求解 camera sensor的 rgb 响应曲线。I是 在光源L照射下,反射率为R 的物体的 颜色rgb值。这样再通过最小二乘方法求解,可以避免更多噪声,更加精确。然后在已知 I,L, R 的情况下,最小二乘得到C。可以发现误差挺大,容易受到噪声的影响。从一张图像恢复出 rgb的响应曲线。原创 2023-03-31 10:33:49 · 2502 阅读 · 1 评论