图像超分辨率
文章平均质量分 78
tony365
树大招风
展开
-
Rethinking Data Augmentation for Image Super-resolution
根据方法应用的位置将现有的增强技术分为两组:像素域就是针对图像 和 特征域就是中间的特征层。作者提出cutblur方法,正则化模型使模型可以学到 在图像的什么区域区增强以及如何增强。作者基于提出cutblur数据增强方法以及其他一些辅助方法 构建一个混合的数据增强策略,效果很好。作者主要利用EDSR model 在 DIV2K和 RealSR 两个数据集上从头训练,进行分析。原创 2024-03-08 13:15:34 · 1454 阅读 · 0 评论 -
GAN 网络的损失函数介绍代码
pixel_opt:相比于一般的l1 loss多了 loss weight, reduction, weight三个功能。首先loss_util.py文件定义weight_lossArgs:Returns:"""else:Args:Returns:"""else::Example:tensor(3.)"""loss = loss_func(pred, target, **kwargs) # 这里 reduction='none'接下来定义带weight的L1 loss。原创 2024-03-07 17:55:11 · 1973 阅读 · 0 评论 -
gan, pixel2pixel, cyclegan, srgan图像超分辨率
上图的左上部分如下就是1个 gan, gan生成目标B, 但是没有label条件约束,因此pixel2pixel中的L1损失就没法使用了,那么如何保持生成的图像目标图像的一致性呢?那么生成器呢,除了原来的损失,再加上一个L1损失。就是通过添加限制条件,来控制GAN生成数据的特征(类别),比如之前我们的随机噪声可以生成数字0-9但是我们并不能控制生成的是0还是1,还是2.噪声z 输入生成器,希望判别器得到 1, 即希望生成器生成的图 输入判别器时 是 1,即希望生成器生成的图,和real更接近。原创 2024-03-06 16:41:29 · 1118 阅读 · 0 评论 -
图像超分辨率:Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution
首先,学习从LR到HR图像的映射函数通常是一个不适定问题,因为存在无限的HR图像可以降采样到相同的LR图像。因此,可能的函数的空间可能非常大,这使得很难找到一个好的解决方案。深度神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的非线性映射函数,在图像超分辨率(SR)方面表现出了良好的性能。其次,成对的LR-HR数据在现实应用程序中可能不可用,而且潜在的退化方法通常是未知的。为了解决上述问题,我们提出了一种对偶回归方案,通过对LR数据引入一个额外的约束,以减少可能的函数的空间。原创 2024-03-06 16:09:25 · 209 阅读 · 0 评论 -
图像超分辨率:Fast Nearest Convolution for Real-Time Efficient Image Super-Resolution
注意的是tf.depth2space 与 torch.pixel_shuffle 在 生成多通道 图像时,排布时不同的。因此最终的效果 就是 把RGB image stack (scale * scale) 次而已。主干网络预测的是 残差,什么的残差?是最近邻插值图像与 ground-truth的残差。最近邻卷积,可以理解为最近邻插值,只不过插值后的图像按channel迭代,而不是空间。然后 与 残差相加,最后一个 depth2space 生成超分图像。提出一种适用移动端的超分网络。原创 2024-03-06 16:01:42 · 371 阅读 · 0 评论 -
图像超分辨率:Quality Assessment of Image Super-Resolution: Balancing Deterministic and Statistical Fidelit
ssim 指数计算如下图ssim基于三个相似度指标,分别是亮度,对比度 和结构[1]原创 2024-03-06 15:57:41 · 1061 阅读 · 0 评论 -
scipy learn sharpen filter
根据图像对学习滤波核之前研究过根据图像对生成3Dlut, 以及生成颜色变换系数这里我们利用图像对学习 滤波。原创 2023-01-28 17:47:25 · 650 阅读 · 0 评论 -
图像超分辨率:Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution(DASR,oppo)
在DASRDataset只是计算blur kernel, 而 blur退化的执行, 以及 resize, noise, jpeg compress等退化的执行是在 DASRModel 类中的 feed_data 函数中。degradation_params 是一个33dim的向量,也是退化预测网络中回归损失函数的 gt.主要分为3个强度的退化空间,在处理数据集的时候,应用的概率分别是。对判别器有个大概的了解,输入的是3通道图像,输出的是单通道等尺寸map。在测试的时候没有判别器,训练的时候有判别器。原创 2022-11-25 13:39:31 · 2084 阅读 · 16 评论