优化算法
文章平均质量分 74
tony365
树大招风
展开
-
Isotonic regression
【代码】Isotonic regression。原创 2023-04-17 17:44:46 · 128 阅读 · 0 评论 -
基于optimal trasport的color transfer:Optimal Transportation for Example-Guided Color Transfer
本文提出了一种新的、通用的基于颜色转移的方法。其次颜色映射:使用最优运输来映射成对的颜色,并通过薄板样条曲线来规范这种映射。直接 应用这个转换在图像分割的地方会产生不想要的边,因此作者利用3D thin plate splines interpolation。通过OT算法得到最右的转换f_ij后,由于每个j可能对应多个i,那么怎么得到最终的j的颜色呢?3) 如果不用tps方法得到的图像如下,效果更差,artifact比较多。然后求出每一个块的 lab空间的 均值和方差(如论文中所说)原创 2023-04-17 15:46:13 · 396 阅读 · 3 评论 -
mlq移动最小二乘方法
对于起始点固定的情况比较友好,可以提前计算出A,然后每次目标变化的时候A也是不变的。更好的weight计算方法,比如考虑图像内容差异。双边weight等。其次不取整,采用cv2.remap更好:下面通过光流warp 图像。可以用在曲面拟合上, 3Dlut拟合, 光流图,深度图拟合优化等。当有一些点聚在一起,会产生大的影响,即使 偏移很小。就是一些特殊情况,边界情况,求逆有问题的情况等需要考虑。关于weight 是否有更好的方式,来应对其他应用。正确性待验证,包括仓库里的代码正确性也不保证。原创 2023-03-30 16:23:35 · 1257 阅读 · 0 评论 -
lattice regression: 求解查找表
那么(1,2,3)所在的bin 的直方图加上er1,eb1,eg1。最终可以构建一个1,2,3,4.,,255的直方图,文中时raw图0-1023的直方图。是约束边缘的项,因为训练数据分布步会是均匀的,想象在3Dlut中饱和度很大的点训练集中可能不会太多或者缺失,这个时候需要对 3Dlut的边缘位置(像素值达到1的点,想象一个立方体除了与(0,0,0)接触的3条边,剩余9条边,使原来是1的现在仍保持1)然后d就是想要的分布,现在的分布时线性,转换为d的分布,就利用直方图规定化的方法,求一个反向查找表。原创 2023-03-21 14:21:28 · 546 阅读 · 0 评论 -
白平衡,颜色校正,颜色映射When Color Constancy Goes Wrong, brown
为什么选择3*11矩阵,作者在有说到各个kernel function的表现下图说明 3*11表现较好和 Guowei Hong, M Ronnier Luo, and Peter A Rhodes. A study of digital camera colorimetric characterisation based on polynomial modelling. Color Research & Application,26(1):76–84, 2001.这两篇论文可以读一下。原创 2023-03-16 09:49:00 · 1515 阅读 · 1 评论 -
Landmark-Based Sparse Color Representations for Color Transfer颜色映射,特征点筛选的方法
是否可以利用特征点检测和匹配,然后进行渲染?答案是不可以,特征点不保证渲染结果良好。所以还是要利用 本文提取的landmark, 关键就是如何将target 图像的landmark转换到另一个图像。文中1)是利用EMD算法匹配 landmark2)是首先配准图像求得配准矩阵或者光流,然后得到landmark的对应关系。原创 2023-03-16 09:25:12 · 320 阅读 · 0 评论 -
Colorization using Optimization:基于优化的上色算法
着色是一种由计算机辅助的向单色图像或电影添加颜色的过程。本文提出了一种简单的着色方法,它既不需要精确的图像分割,也不需要精确的区域跟踪。可以通过最小二乘方法,也可以通过迭代法,比如代码中使用雅可比迭代法求解该方程。只需要用一些颜色的涂鸦来注释图像,该算法可以产生一个完全彩色的图像或图像序列。代码中实现两个方法,一个调用库函数,一个雅可比迭代求线性方程组。本文主要分析下面的代码,写的很清晰易懂,效果很好。一个像素的颜色可以由邻域像素颜色的加权得到。具有相似强度的相邻像素应该具有相似的颜色。原创 2023-03-16 09:19:10 · 778 阅读 · 0 评论 -
隐式神经表示二:超分网络学习傅里叶系数Local Texture Estimator for Implicit Representation Function
将上面的结果,与双线性插值的 upscale LR 相加, 得到最后的结果,因此解码器输出的可以当作是。一个典型的隐式表示方法作超分:隐式体现在 不是 直接拟合图像,二十首先提取特征,再根据特征估计目标。接下来,就是根据 幅度,频率,相位得到 傅里叶表示,后续会输入 解码器。首先根据输入的坐标 找到 最近邻的4个坐标,利用了循环,目的是求。双线性插值得到网络的结果, areas是双线性插值的系数。可以理解为,输入一个坐标,利用 1)最近的4个点的特征。是encoder的输出,可以理解为提取的图像特征。原创 2022-11-16 17:56:22 · 2823 阅读 · 0 评论 -
隐式神经表示一:神经网络拟合图像Implicit Neural Representations with Periodic Activation Functions
就是说用一个神经网络表示一个函数。隐式神经表示(Implicit Neural Representations)是指通过神经网络的方式将输入的图像、音频、以及点云等信号表示为函数的方法[1]。对于输入x找到一个合适的网络F使得网络F能够表征函数Φ由于函数Φ是连续的,从而使得原始信号是连续的、可微的。这么干的好处在于,可以获取更高效的内存管理,得到更加精细的信号细节,并且使得图像在高阶微分情况下仍然是存在解析解的,并且为求解反问题提供了一个全新的工具。原创 2022-11-16 14:30:28 · 5296 阅读 · 1 评论 -
高斯牛顿和LM 优化原理
http://m.blog.csdn.net/zhubaohua_bupt/article/details/74973347 调节lamda的讲解不是很明白,有问题?转载 2017-08-30 18:03:01 · 3114 阅读 · 0 评论 -
KDtree
http://www.cnblogs.com/v-July-v/archive/2012/11/20/3125419.html转载 2017-08-31 09:53:51 · 284 阅读 · 0 评论