线性规划下的直线拟合

本文介绍了如何使用线性规划来拟合满足切比雪夫准则的直线,通过引入松弛变量将不等式转化为等式,并详细解析了不同情况下的求解过程,证明了这种方法与三点极小化最大残差法的等效性。
摘要由CSDN通过智能技术生成

前言

        在我上一篇博文《散点图下基于切比雪夫(Chebyshev)近似准则拟合直线》,介绍了如何用三点极小化最大残差的方法去拟合直线。该直线满足切比雪夫准则。本篇文章主要介绍如何用线性规划去拟合直线,该结果也满足切比雪夫准则,同时也证明了我上一篇博文的正确性。

线性规划

        给定散点对(X,Y),假设拟合的直线y_{i}=ax_{i}+b , i=0,1,2,3,... 满足切比雪夫准则。则存在最大残差r_{max}>0,使得r_{max}-\left | y_{i}-ax_{i}-b \right |\geqslant 0。于是每一个点,我们有方程组:

                \left\{\begin{matrix} r_{max}-(y_{i}-ax_{i}-b)\geqslant 0\\ r_{max}+(y_{i}-ax_{i}-b)\geqslant 0 \end{matrix}\right.

给它取个负号,即两边同时乘以-1:

                \left\{\begin{matrix} y_{i}-ax_{i}-b-r_{max}\leqslant 0\\ ax_{i}-r_{max}-y_{i}+b\leqslant 0 \end{matrix}\right.

很明显,有多少个点,就有多少的方程组对。这是个线性规划问题,而我们的目的就是要求此线性规划使得Min(r_{max})成立的解。

松弛变量

        此时,我们给方程组加上一个松弛变量,让其不等式变成等式:

                \left\{\begin{matrix} y_{i}-ax_{i}-b-r_{max}+z_{i0}=0\\ ax_{i}-r_{max}-y_{i}+b+z_{i1}=0 \end{matrix}\right.

其中z_{i0},z_{i1}就是松弛变量(relaxation variables),且z_{i0},z_{i1}\geqslant 0

现在,我们有变量(a,b,r_{max}),(z_{00},z_{01},z_{10},z_{11},...z_{n0},z_{n1})。其中(a,b,r_{max})是我们要求的。同时,它也说明,我们至少需要三个方程来求解。

代数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值