由于基座模型通常需要海量的数据和算力内存,这一巨大的成本往往只有巨头公司会投入,所以一些优秀的大语言模型要么是大公司开源的,要么是背后有大公司身影公司开源的,如何从优秀的开源基座模型针对特定场景fine-tune模型具有广大的前景,从数据开源、到基座模型到新方法的迭代升级使得个人都有机会践行fine-tune这一过程。
为了使得基座模型能够迁移到不同的任务应用场景中,Fine-tune是最为使用的方法之一,为了减少fine-tune阶段需要的算力内存开销,当前主要有PEFT(parameter-efficient fine-tuning)和参数量化两类方向,PEFT(parameter-efficient fine-tuning)核心思想是重新训练对新任务影响较大的少部分参数,而基座模型大部分参数保持不变,量化的核心思想是通过模型参数位宽(量化)的减少降低内存消耗,将二者结合使用能够进一步减少资源消耗,如何高效的使用量化、PEFT等技术在减少算力的需求的前提下减少准确性损失是当前主流研究方向。
本篇博客讨论当前高效训练和推理LLM的PEFT和量化相关技术,PEFT技术仅介绍使用较广的LoRA。
量化的目的是提高芯片计算吞吐量和减少内存占用,当前8-bit和4-bit量化已经在商业上可以在消费级硬件上运行模型,量化(GPTQ、GGUF)+开源LLama+PEFT(