NVIDIA 显卡架构匹配 CUDA arch 和 CUDA gencode

博客介绍了不同架构显卡对应的CUDA版本支持范围,包括Kepler、Maxwell、Pascal等架构。详细说明了各架构下不同型号显卡对应的SM编号,以及部分显卡在特定CUDA版本中的支持状态,如是否被弃用、建议替换型号等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kepler cards (CUDA 5 until CUDA 10)

Deprecated from CUDA 11.

  • SM30 or SM_30, compute_30 –
    Kepler architecture (e.g. generic Kepler, GeForce 700, GT-730).
    Adds support for unified memory programming
    Completely dropped from CUDA 11 onwards.
  • SM35 or SM_35, compute_35 –
    Tesla K40.
    Adds support for dynamic parallelism.
    Deprecated from CUDA 11, will be dropped in future versions.
  • SM37 or SM_37, compute_37 –
    Tesla K80.
    Adds a few more registers.
    Deprecated from CUDA 11, will be dropped in future versions, strongly suggest replacing with a 32GB PCIe Tesla V100.

Maxwell cards (CUDA 6 until CUDA 11)

  • SM50 or SM_50, compute_50 –
    Tesla/Quadro M series.
    Deprecated from CUDA 11, will be dropped in future versions, strongly suggest replacing with a Quadro RTX 4000 or A6000.
  • SM52 or SM_52, compute_52 –
    Quadro M6000 , GeForce 900, GTX-970, GTX-980, GTX Titan X.
  • SM53 or SM_53, compute_53 –
    Tegra (Jetson) TX1 / Tegra X1, Drive CX, Drive PX, Jetson Nano.

Pascal (CUDA 8 and later)

  • SM60 or SM_60, compute_60 –
    Quadro GP100, Tesla P100, DGX-1 (Generic Pascal)
  • SM61 or SM_61, compute_61
    GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030 (GP108), GT 1010 (GP108) Titan Xp, Tesla P40, Tesla P4, Discrete GPU on the NVIDIA Drive PX2
  • SM62 or SM_62, compute_62 – 
    Integrated GPU on the NVIDIA Drive PX2, Tegra (Jetson) TX2

Volta (CUDA 9 and later)

  • SM70 or SM_70, compute_70 –
    DGX-1 with Volta, Tesla V100, GTX 1180 (GV104), Titan V, Quadro GV100
  • SM72 or SM_72, compute_72 –
    Jetson AGX Xavier, Drive AGX Pegasus, Xavier NX

Turing (CUDA 10 and later)

  • SM75 or SM_75, compute_75 –
    GTX/RTX Turing – GTX 1660 Ti, RTX 2060, RTX 2070, RTX 2080, Titan RTX, Quadro RTX 4000, Quadro RTX 5000, Quadro RTX 6000, Quadro RTX 8000, Quadro T1000/T2000, Tesla T4

Ampere (CUDA 11.1 and later)

  • SM80 or SM_80, compute_80 –
    NVIDIA A100 (the name “Tesla” has been dropped – GA100), NVIDIA DGX-A100
  • SM86 or SM_86, compute_86 – (from CUDA 11.1 onwards)
    Tesla GA10x cards, RTX Ampere – RTX 3080, GA102 – RTX 3090, RTX A2000, A3000, RTX A4000, A5000, A6000, NVIDIA A40, GA106 – RTX 3060, GA104 – RTX 3070, GA107 – RTX 3050, RTX A10, RTX A16, RTX A40, A2 Tensor Core GPU, A800 40GB
  • SM87 or SM_87, compute_87 – (from CUDA 11.4 onwards, introduced with PTX ISA 7.4 / Driver r470 and newer) – for Jetson AGX Orin and Drive AGX Orin only

Devices of compute capability 8.6 have 2x more FP32 operations per cycle per SM than devices of compute capability 8.0. While a binary compiled for 8.0 will run as is on 8.6, it is recommended to compile explicitly for 8.6 to benefit from the increased FP32 throughput.

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#improved_fp32

Ada Lovelace (CUDA 11.8 and later)

Hopper (CUDA 12 and later)

  • SM90 or SM_90, compute_90 –
    NVIDIA H100 (GH100), NVIDIA H200
  • SM90a or SM_90a, compute_90a – (for PTX ISA version 8.0) – adds acceleration for features like wgmma and setmaxnreg. This is required for NVIDIA CUTLASS

Blackwell (CUDA 12 and later)

  • SM95 or SM_95, compute_95 –
    NVIDIA B100 (GB100)

 

<think>好的,用户现在在问50系显卡的CUDA架构标志是什么。我需要先确认50系显卡的具体架构名称。 首先,回顾一下NVIDIA显卡架构历史。之前的几代架构比如Turing(20系)、Ampere(30系)、Ada Lovelace(40系)。按照这个命名规律,50系可能会是下一代架构,但还没有正式发布的消息。 接下来,我需要检查是否有官方资料或者可靠的泄露信息提到50系显卡的架构名称。目前公开的信息中,NVIDIA还没有公布50系显卡的细节,所以架构名称可能还不确定。可能用户看到了一些传闻或者预测,比如之前有猜测可能叫“Blackwell”或者其他名字。 然后,考虑用户可能的背景。他们可能在开发CUDA应用,需要提前了解架构标志来配置代码或者环境。或者是学术研究,需要为未来的硬件做准备。这时候,正确的架构标志对于编译优化代码很重要。 用户的问题可能源于对现有架构标志的熟悉,比如sm_86对应Ampere,sm_89对应Ada Lovelace,所以想知道下一代会是什么。但如果没有官方信息,我只能根据惯例推测,比如如果架构名称是Blackwell,标志可能是sm_90或者更高的数字,但不确定。 需要提醒用户当前的信息是基于预测,建议他们关注NVIDIA的官方公告。同时,可以解释架构标志的命名规则,比如sm_xx中的xx代表计算能力版本号,通常随着架构更新递增。例如,Ampere是8.x,Ada是8.9,那下一代的版本号可能是9.0,对应的架构标志是sm_90。 另外,用户可能需要知道如何设置编译参数,比如-gencode=arch=compute_xx,code=sm_xx,所以需要正确的架构标志。如果现在还没有发布,可能需要等待官方消息,或者使用最新的CUDA版本支持的最高标志。 总结来说,我的回答需要说明目前没有官方确认,根据推测可能的架构标志,并建议用户关注未来发布的信息,同时解释现有架构标志的规律,帮助用户理解可能的命名方式。</think>截至2024年7月,**NVIDIA尚未正式发布50系显卡(如RTX 5090等)**,因此其对应的CUDA架构标志(即`compute capability`或`sm_xx`)尚未官方公布。不过,根据历史规律技术预测,可以推测以下信息: --- ### **1. 当前架构与标志对应关系** | 显卡系列 | 架构代号 | CUDA计算能力(架构标志) | |----------|---------------|--------------------------| | 20系 | Turing | `sm_75` | | 30系 | Ampere | `sm_86`(桌面卡) | | 40系 | Ada Lovelace | `sm_89` | --- ### **2. 50系显卡的可能架构** - **预期架构名称**: 根据NVIDIA的命名传统,50系可能属于下一代架构。此前传闻可能命名为**Blackwell**或延续其他科学家人名(如Hopper之后)。 - **预计计算能力**: - 若延续递增逻辑,计算能力版本可能为`sm_90`或`sm_9x`。 - 实际标志需以NVIDIA官方发布为准。 --- ### **3. 如何应对未来开发?** - **代码兼容性**: 在CUDA代码中,可通过条件编译或通用标志兼容未来架构: ```bash nvcc -gencode=arch=compute_89,code=sm_89 \ # 当前最新(Ada Lovelace) -gencode=arch=compute_90,code=sm_90 \ # 预留50系(假设) -gencode=arch=compute_90,code=compute_90 ``` - **动态适配**: 使用`CUDA_ARCH`环境变量或运行时检测硬件能力。 --- ### **4. 验证与更新** - **官方文档**: NVIDIA发布新架构后,需查阅以下资源确认: - [CUDA计算能力表](https://developer.nvidia.com/cuda-gpus) - [CUDA编程指南](https://docs.nvidia.com/cuda/) --- ### **5. 当前建议** - **关注发布会**: NVIDIA通常会在GTC大会(每年3月/9月)发布新架构。 - **使用最新CUDA工具包**: CUDA 12.x及以上版本可能提前支持新架构的预览功能。 --- 若需实时更新信息,建议订阅[NVIDIA开发者新闻](https://developer.nvidia.com/)或关注官方公告。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值