Adaptive Boosting(AdaBoost)

1. Motivation

bootstrap在训练集上通过有放回的采样构造出不同的训练数据,该过程可以看作在完整训练集上,为每一个样本赋予不同的权重。若该样本在本次抽样中没有被选中,则其权重为0。

图片名称

在采样得到的每一个数据集 u(t)n 上训练得到模型 gt 。为了增加不同 gt 之间的差异性,可采用如下思路:经过训练得到的模型 gt 在数据集 u(t)n 上具有较好的表现,我们希望 gt 在数据集 u(t+1)n 上的表现较差,这样通过 u(t+1)n 训练出的模型 gt+1 gt 就会存在差异。
具体做法就是让 gt 模型在构造出的 u(t+1)n 数据集上的二分类准确率为50%,这样就等同于机选。

图片名称

具体例子如下:在数据集 u(t)n 上,模型 gt 分类正确的数据有6211个,分类错误的数据有1126个。因此在构造 u(t+1)n 时,将分类错误的样本权重乘以 1126 ,将分类正确的样本权重乘以 6211 。即放大错误,减小正确的影响。

图片名称

将多个较弱的模型

2. Algorithm

Adaptive Boosting 算法训练出多个不同的模型 gt ,并将其组合起来形成一个更强的模型 G(x) 。Adaptive Boosting在训练模型和计算模型权重上是同时进行的。具体流程如下:

图片名称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值