最小二乘法为一种优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,使结果接近最优解,找出最能反映x,y之间关系规律的直线(函数)。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法求解的核心为:
- 列出误差方程
- 求最小化误差方程
误差方程:用目标函数减去拟合函数,再取其平方即可。用平方和寻找最短距离。相比于绝对值的方法,平方和的方法可以得到更短的距离,使得拟合函数更接近于目标函数。其实就是从范数的角度考虑这个问题,绝对值对应的是1范数,最小二乘对应的就是2范数。
范数:常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
向量范数:
- 1范数: ,向量元素绝对值之和。
- 2范数: