最小二乘法

最小二乘法是一种优化技术,用于找到最佳函数匹配以最小化数据误差的平方和。它通过误差方程(2范数)确定最能反映x和y关系的直线。最小二乘法涉及向量和矩阵的范数概念,如1范数和2范数,通过对误差函数求偏导找到极值点来实现最小化。
摘要由CSDN通过智能技术生成

最小二乘法为一种优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配,使结果接近最优解,找出最能反映x,y之间关系规律的直线(函数)。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法求解的核心为:

  1. 列出误差方程
  2. 求最小化误差方程

误差方程:用目标函数减去拟合函数,再取其平方即可。用平方和寻找最短距离。相比于绝对值的方法,平方和的方法可以得到更短的距离,使得拟合函数更接近于目标函数。其实就是从范数的角度考虑这个问题,绝对值对应的是1范数,最小二乘对应的就是2范数。

范数:常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
向量范数:

  • 1范数:这里写图片描述 ,向量元素绝对值之和。
  • 2范数:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值