python reduce_sum使用记录

import tensorflow as tf
data=[[1,1,2],[1,1,1]]

'''行列求和'''
defaultReduceSume=tf.reduce_sum(data)
'''行列求和'''
hangLieReduceSumBy=tf.reduce_sum(data, [0, 1])


'''按行求和'''
hangReduceSum=tf.reduce_sum(data,1)
'''按列求和'''
lieReduceSum=tf.reduce_sum(data,0)

'''默认是按行排列 ,true是按列排列'''
hangZReduceSum=tf.reduce_sum(data, 1, keep_dims=True)



with tf.Session() as sess:
    print(sess.run(defaultReduceSume))
    print(sess.run(hangLieReduceSumBy))
    print(sess.run(hangReduceSum))
    print(sess.run(lieReduceSum))
    print(sess.run(hangZReduceSum))

运行结果:

7
7
[4 3]
[2 2 3]
[[4]
 [3]]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值