YOLOv8 智能交通流量监测部署与优化建议
性能优化
1. 模型量化和剪枝技术
模型量化和剪枝是减小模型大小、提升推理速度的重要技术,特别适用于边缘设备部署。
python
# model_optimization.py
import torch
from ultralytics import YOLO
import torch.nn.utils.prune as prune
import copy
class ModelOptimizer:
def __init__(self, model_path):
"""
初始化模型优化器
"""
self.model = YOLO(model_path)
self.original_model = copy.deepcopy(self.model)
def quantize_model(self, save_path='quantized_model.pt'):
"""
模型量化 - 将FP32模型转换为INT8模型
"""
try:
# 使用PyTorch的量化功能
model = self.model.model
# 设置量化配置
model.eval()
model.qconfi