指标按其值是否为数值,可分为定量指标和定性指标(或称模糊的)。
传统上,指标按其具体含义可分为效益型,成本型,固定型和区间型。效益型指标是指其值越大越好的指标;成本型指标是指其值越小越好的指标;固定型指标是指其值不能太大,又不能太小,而以稳定在某个固定值为最佳的指标;或者说其值越接近某个值越好的指标;区间型指标是指其值以落在某个固定区间为最佳的指标,或者说,其值越接近某个固定区间(包括落入该区间)越好的指标。
但是,世界上的事物都是对立统一的。既然现实问题中存在越接近某值越好的指标(固定型),自然存在越偏离某个值越好的指标;既然存在越接近某区间越好的指标(区间型),自然存在越偏离某个区间越好的指标。因此提出另外两个指标:
偏离型指标是指越偏离某个具体的值(称作劣值)越好的指标。
偏离区间型指标是指越偏离某个具体区间(称作劣区间)越好的指标。
指标的标度问题:
多个指标的单位通常互不相同,所以不能互相比较。值就是指标的标度问题和指标的标准化问题。
1. 指标的标度 有三种计量尺度可用于量的计算:序数尺度,区间尺度和比率尺度。由于定性指标转化为比率尺度极难,所以大部分MODM方法借助于序数尺度或区间尺度。定性指标转换为序数尺度比转换为区间尺度容易的多。下面是定性指标向区间尺度转换的方法。
2.定性指标的量化 把定性指标转化为区间尺度的常用方法之一是使用Bipolar尺度。例如:可选10点标度并用某一方式标定它。从终点开始,给最优属性值赋10点,给最差属性值赋0点。中间点也是标定的基础。因为它是有利的属性值和不利的属性值之间的转折点。
指标的标准化:
Hwang&Yoon Nijkamp和Nijkamp给出了标准化效益和成本型属性的极差变换法和线形尺度变换法以及向量标准化法
yij=(xij−minixij)/(maxixij−minixij)i∈M,j∈T1
(1)
yij=(maxixij−xij)/(maxixij−minixij)i∈M,j∈T2
(2)
yij=xij/maxixiji∈M,j∈T1
(3)
yij=minixij/xiji∈M,j∈T2
(4)
yij=1−xij/maxixiji∈M,j∈T2
(5)
yij=xij/(√∑ni=0(xij)2)i∈M,j∈T1⋃T2
(6)
上面的式子中,
Ti
(i=1~4)分别表示效益型,成本型,固定型以及区间型。
xij
表示第i个方案关于第j个指标
fi
的值。变换式1和变换式2的优点是:经其变换后,各指标下的度量值在0和1之间变化,且各指标下最好结果的指标值
yij=1
,最坏结果的指标值
yij=0
。其缺点是:变换前后的各指标不成比例。变换式3和4的优点是它们线形的,且变换前后的各指标值成比例。但对任一指标来说,变换后
yij=1
和
yij=0
不一定同时出现。变换式6的优点:把所有指标值都化为无量纲的量,且处于区间(0,1),有利于指标间的比较;缺点是:它是非线形变换,不能产生等长的计算尺度,变换前后各指标的最大值和最小值不相同,因而指标间之间比较仍有困难。式1,2可以同时使用,式3,4可以同时使用。但是式3和5不可以同时使用,因为它们的基点不同,即最好指标值式3和5标准化后不一定同时为1.
标准化的方法不仅是这些,具体的可以灵活使用。