TOPSIS法(优劣解距离法)--评价类模型

本文探讨了层次分析法的局限性,如处理定性问题和定量数据的限制,然后重点介绍了TOPSIS法如何解决多指标评价问题,包括效益型、成本型、中间型和区间型指标的转换方法,以及标准化处理和归一化思路,最后提到了加权TOPSIS法在考虑指标权重时的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

层次分析法的局限性主要表现在:

  • 决策层不能太多;
  • 主要解决定性问题的定量化,无法处理定量数据的问题。

TOPSIS法主要解决多指标不同处理方式的评价问题

  • 效益型指标(数值越大越好)
  • 成本型指标(数值越小越好)
  • 中间型指标(越靠近某个值越好)
  • 区间型指标(越靠近某个区间越好)

指标类型转换(转为效益型指标)--矩阵正向化

成本型转效益型指标:(max-x)或(1/x)

中间型转效益型指标:M=max{m-min,max-m};1-(|x-m|/M)

区间型转效益型指标:M=max{a-min,max-b};当x<a时,1-{(a-x)/M}

                                                                            当a<x<b时,1

                                                                            当x>b时,1-{(x-b)/M}

标准化处理--消除量纲的影响(方法很多)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值