在scipy.spatial中最重要的模块应该就是距离计算模块distance了。
from scipy import spatial
距离计算
矩阵距离计算函数
矩阵参数每行代表一个观测值,计算结果就是每行之间的metric距离。Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.
向量距离计算函数Distance functions between two vectors u and v
Distance functions between two vectors u and v. Computingdistances over a large collection of vectors is inefficient for thesefunctions. Use pdist for this purpose.
输入的参数应该是向量,也就是维度应该是(n, ),当然也可以是(1, n)它会使用squeeze自动去掉维度为1的维度;但是如果是多维向量,至少有两个维度>1就会出错。
e.g. spatial.distance.correlation(u, v) #计算向量u和v之间的相关系数(pearson correlation coefficient, Centered Cosine)
Note: 如果向量u和v元素数目都只有一个或者某个向量中所有元素相同(分母norm(u - u.mean())为0),那么相关系数当然计算无效,会返回nan。
braycurtis(u, v) | Computes the Bray-Curtis distance between two 1-D arrays. |
canberra(u, v) | Computes the Canberra distance between two 1-D arrays. |
chebyshev(u, v) | Computes the Chebyshev distance. |
cityblock(u, v) | Computes the City Block (Manhattan) distance. |
correlation(u, v) | Computes the correlation distance between two 1-D arrays. |
cosine(u, v) | Computes the Cosine distance between 1-D arrays. |
dice(u, v) | Computes the Dice dissimilarity between two boolean 1-D arrays. |
euclidean(u, v) | Computes the Euclidean distance between two 1-D arrays. |
hamming(u, v) | Computes the Hamming distance between two 1-D arrays. |
jaccard(u, v) | Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays. |
kulsinski(u, v) | Computes the Kulsinski dissimilarity between two boolean 1-D arrays. |
mahalanobis(u, v, VI) | Computes the Mahalanobis distance between two 1-D arrays. |
matching(u, v) | Computes the Matching dissimilarity between two boolean 1-D arrays. |
minkowski(u, v, p) | Computes the Minkowski distance between two 1-D arrays. |
rogerstanimoto(u, v) | Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays. |
russellrao(u, v) | Computes the Russell-Rao dissimilarity between two boolean 1-D arrays. |
seuclidean(u, v, V) | Returns the standardized Euclidean distance between two 1-D arrays. |
sokalmichener(u, v) | Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays. |
sokalsneath(u, v) | Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays. |
sqeuclidean(u, v) | Computes the squared Euclidean distance between two 1-D arrays. |
wminkowski(u, v, p, w) | Computes the weighted Minkowski distance between two 1-D arrays. |
yule(u, v) | Computes the Yule dissimilarity between two boolean 1-D arrays. |
scipy.spatial.distance.pdist(X, metric=’euclidean’, p=2, w=None, V=None, VI=None)
pdist(X[, metric, p, w, V, VI])Pairwise distances between observations in n-dimensional space.观测值(n维)两两之间的距离。Pairwise distances between observations in n-dimensional space.距离值越大,相关度越小。
注意,距离转换成相似度时,由于自己和自己的距离是不会计算的默认为0,所以要先通过dist = spatial.distance.squareform(dist)转换成dense矩阵,再通过1 - dist计算相似度。
metric:
1 距离计算可以使用自己写的函数。Y = pdist(X, f) Computes the distance between all pairs of vectors in Xusing the user supplied 2-arity function f.
如欧式距离计算可以这样:
dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))
但是如果scipy库中有相应的距离计算函数的话,就不要使用dm = pdist(X, sokalsneath)这种方式计算,sokalsneath调用的是python自带的函数,会调用c(n, 2)次;而应该使用scipy中的optimized C version,使用dm = pdist(X, 'sokalsneath')。
再如矩阵行之间的所有cause effect值的计算可以这样:
def causal_effect(m): effect = lambda u, v: u.dot(v) / sum(u) - (1 - u).dot(v) / sum(1 - u) return spatial.distance.squareform(spatial.distance.pdist(m, metric=effect))
2 这里计算的是两两之间的距离,而不是相似度,如计算cosine距离后要用1-cosine才能得到相似度。从下面的consine计算公式就可以看出。
Y = pdist(X, ’euclidean’) #d=sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2)
Y = pdist(X, ’minkowski’, p)
scipy.spatial.distance.cdist(XA, XB, metric=’euclidean’, p=2, V=None, VI=None, w=None)
cdist(XA, XB[, metric, p, V, VI, w])Computes distance between each pair of the two collections of inputs.
当然XA\XB最简单的形式是一个二维向量(也必须是,否则报错ValueError: XA must be a 2-dimensional array.),计算的就是两个向量之间的metric距离度量。
scipy.spatial.distance.squareform(X, force=’no’, checks=True)
squareform(X[, force, checks])Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.
将向量形式的距离表示转换成dense矩阵形式。Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.
注意:Distance matrix 'X' must be symmetric&diagonal must be zero.