机器学习、图像相关知识图谱

2017-12-27 13:25:03

阅读数:246

评论数:0

多分类问题multicalss classification

多分类问题:有N个类别C1,C2,...,Cn,多分类学习的基本思路是“拆解法”,即将多分类任务拆分为若干个而分类任务求解,最经典的拆分策略是:“一对一”,“一对多”,“多对多” (1)一对一 给定数据集D={(x1,y1),(x2,y2),...,(xn,yn)},yi€{c1,c2...

2017-12-27 11:37:53

阅读数:214

评论数:0

从随机过程到马尔科夫链蒙特卡洛方法

1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间...

2017-12-27 11:08:56

阅读数:106

评论数:0

马尔科夫蒙特卡洛算法(MCMC)

1.名词解释  MCMC方法就是*构造合适的马尔科夫链进行抽样而使用蒙特卡洛方法进行积分计算,既然马尔科夫链可以收敛到平稳分布。我们可以建立一个以π为平稳分布的马尔科夫链,对这个链运行足够长时间之后,可以达到平稳状态。此时马尔科夫链的值就相当于在分布π(x)中抽取样本。利用马尔科夫链进行随机模拟的...

2017-12-27 11:05:57

阅读数:205

评论数:0

keras 与tensorflow 混合使用

keras 与tensorflow 混合使用 keras 与tensorflow 混合使用 tensorfow   Fly   keras 最近tensorflow更新了新版本,到1.4了。做了许多更新,当然重要的是增加了tf.keras. 毕...

2017-12-25 17:22:39

阅读数:2968

评论数:1

规则引擎Pyke与PyClips对比研究报告

1. 背景综述   规则引擎主要实现的功能是存储、分类和管理规则,执行规则、推断其它事实的应用程序。其中的规则主要是指企业或商务业务逻辑、法律条款等。在规则引擎发展的过程中,Rete算法和Prolog语言是两个重要的理论分支,多数规则引擎都是基于以上二者扩展而来的。在工业活动铸造中,发展时间较...

2017-12-25 09:59:11

阅读数:720

评论数:0

增强学习系列之(二):实现一个简单的增强学习的例子

我们现在来用之前提到的Q-Learning算法,实现一个有趣的东西 1. 算法效果 我们想要实现的,就是一个这样的小车。小车有两个动作,在任何一个时刻可以向左运动,也可以向右运动,我们的目标是上小车走上山顶。一开始小车只能随机地左右运动,在训练了一段时间之后就可以很好地完成我们设定的目标了 ...

2017-12-22 09:39:25

阅读数:237

评论数:0

tensorflow添加自定义的auc计算operator

tensorflow添加自定义的auc计算operator tensorflow可以很方便的添加用户自定义的operator(如果不添加也可以采用sklearn的auc计算函数或者自己写一个但是会在python执行,这里希望在graph中也就是c++端执行这个计算) 这里根据工作需要添加一个计...

2017-12-20 17:18:52

阅读数:627

评论数:0

手把手教你用GAN实现半监督学习

引言 本文主要介绍如何在tensorflow上仅使用200个带标签的mnist图像,实现在一万张测试图片上99%的测试精度,原理在于使用GAN做半监督学习。前文主要介绍一些原理部分,后文详细介绍代码及其实现原理。前文介绍比较简单,有基础的同学请掠过直接看第二部分,文章末尾给出了代码GitHub链接...

2017-12-18 18:24:39

阅读数:576

评论数:0

GAN用于半监督学习

概述 GAN的发明者Ian Goodfellow2016年在Open AI任职期间发表了这篇论文,其中提到了GAN用于半监督学习(semi supervised)的方法。称为SSGAN。  作者给出了Theano+Lasagne实现。本文结合源码对这种方法的推导和实现进行讲解。1 半监督学习...

2017-12-18 17:42:17

阅读数:1267

评论数:0

TensorflowOnSpark:1)Standalone集群初体验

1.实验环境 Centos7+Python2.7+Java8+Spark1.6+Hadoop2.7+Tensorflow0.12.1 Spark和Hadoop的集群搭建网上教程比较多,这里以最简洁的方法配置集群,针对tensorflow添加的额外配置,我会进行强调(其实地上本没有坑,跌的人...

2017-12-14 13:40:20

阅读数:137

评论数:0

#####好好好#####特征离散化方法综述

致谢老婆大人为本期博客创作配图,你的支持是我坚持下去的动力 特征离散化系列一方法综述 数值离散化在数据挖掘和发现知识(data mining and knowledge discovery)方面扮演者重要的角色。许多研究表明归纳任务(induction tasks)能从离散化(discreti...

2017-12-14 10:23:33

阅读数:517

评论数:0

互联网广告综述之点击率特征工程

互联网广告综述之点击率特征工程 一.互联网广告特征工程 博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训...

2017-12-14 10:05:19

阅读数:79

评论数:0

LibRec 每周算法:DeepFM

本周介绍一篇来自与哈工大与华为诺亚方舟实验室的论文。 本文提出的DeepFM模型有效的结合了神经网络与因子分解机在特征学习中的优点。DeepFM可以同时提取到低阶组合特征与高阶组合特征,并除了得到原始特征之外无需其他特征工程。实验表明DeepFM比其他用于CTR的模型更加有效和高效。 Guo...

2017-12-13 11:13:30

阅读数:1751

评论数:0

######好好好好好######常见计算广告点击率预估算法总结

前言 谈到CTR,都多多少少有些了解,尤其在互联网广告这块,简而言之,就是给某个网络服务使用者推送一个广告,该广告被点击的概率,这个问题难度简单到街边算命随口告诉你今天适不适合娶亲、适不适合搬迁一样,也可以复杂到拿到各种诸如龟壳、铜钱等等家伙事,在沐浴更衣、净手煴香后,最后一通预测,发现完全...

2017-12-13 11:05:44

阅读数:155

评论数:0

用户在线广告点击行为预测的深度学习模型

本次分享主要讲的是深度学习在Multi-field Categorical 这类数据集上的应用,这种类型的数据主要呈现以下特征:有多个域,每个域上的数据以ID格式呈现。本课题就是在信息检索这一大类下的应用,它的应用主要体现在:网络搜索、推荐系统、广告展示这些领域。深度学习对连续数据和序列数据(比如...

2017-12-13 11:02:37

阅读数:291

评论数:0

####好好好#######FM实现(tensorflow版)

今天在看了一下FM算法,就试着用tensorflow实现了一下,数据集用的是sklearn中的iris,我将target=2的删除掉了,保留了target=0 or 1的做一个二分类的测试. 首先来扯一下FM算法的思路,我感觉FM和MF是完全相反的思路,MF矩阵分解的大体思路是直接用两个矩阵...

2017-12-13 10:56:06

阅读数:1602

评论数:0

基于LR的新闻多分类(基于spark2.1.0, 附完整代码)

原创文章!转载请保留原始文章链接,谢谢! 环境: Scala2.11.8 + Java1.8.0_112 Spark2.1.0 + HanLP1.3.2   完整项目代码见我的GitHub:https://github.com/yhao2014/ckooc...

2017-12-13 10:38:14

阅读数:417

评论数:0

DeepFM:深度学习算法助力华为应用市场APP推荐

今年8月下旬,在澳大利亚墨尔本召开的IJCAI2017会议上,来自华为伏羲推荐团队的专家发表了他们在深度学习推荐算法方面的最新成果。伏羲推荐引擎是华为应用市场联合华为诺亚方舟实验室开发的一款推荐系统。针对华为应用市场的业务特点和数据特征,伏羲推荐算法团队提出的端到端的深度学习推荐模型DeepFM,...

2017-12-13 10:32:35

阅读数:1410

评论数:0

关于点击率模型,你知道这三点就够了

说到计算广告,或者个性化推荐,甚至一般的互联网产品,无论是运营、产品还是技术,最为关注的指标,就是点击率。业界也经常流传着一些故事,某某科学家通过建立更好的点击率预测模型,为公司带来了上亿的增量收入。点击率这样一个简单直接的统计量,为什么要用复杂的数学模型来刻画呢?这样的模型又是如何建立与评估的呢...

2017-12-13 10:25:38

阅读数:179

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭