漫步微积分三十五——弧长

弧是介于曲线上两个特定点 A 和点B之间的一部分,如图1 左边所示。物理上,弧长是一个非常简单的概念。数学上,它是稍微有点复杂。从物理观点看,我们只是折弯了一根绳子来拟合从 A B的曲线,标记下对应的点 A B,将绳子伸直然后用尺子量出长度。

这一过程可以用如下的逼近过程(适合于数学处理)来解决。弧 AB 用点 P0=A,P1,P2,,Pn=B 分成 n 部分;将针放在这些点上;让该线段沿着这些一个个短针得到的路径延伸。我们在图1右边用n=3的情况说明了这个想法。 A,B 之间的长度明显短于弧长,因为两个点之间直线最短。然而,如果我们采取更大的 n 值,同时要求针之间放置的足够近,那么线的长度应该接近弧的长度。我们现在用数学语言表达它并推导出用积分计算弧长的实用方法。


这里写图片描述
图1

假设下面讨论的弧是连续函数y=f(x)的在区间 axb 上的图像。我们将区间 [a,b] 分成 n 个子区间,用点x0=a,x1,,xk1,xk,,xn=b标记出来如图2所示。令 Pk 表示点 (xk,yk) ,其中 yk=f(xk) 。 多边路径 P0P1Pk1PkPn 的总长度是每个点之间弦长的长度和。如果我们写成

Δxk=xkxk1andΔyk=ykyk1k=1,2,,n

那么利用毕达哥拉斯定理得

length of kth chord=(Δxk)2+(Δyk)2=[1+(Δyk)2(Δxk)2](Δxk)2=1+(ΔykΔxk)2Δxk(1)

现在我们假设函数 y=f(x) 不仅连续而且可导。那么我们就能用 xk1,xk 之间某点 xk 处的导数值代替根号下的比值(也就是连接 Pk1,Pk 之间弦长的斜率)

ΔykΔxk=f(xk)xk1<xk<xk

这一步是基于这个事实:弦平行于曲线 Pk1,Pk 之间某点的切线。所以我们能将(1)写成

length of kth chord=1+[f(xk)]2Δxk

所以总长度为

k=1n1+[f(xk)]2Δxk(2)

现在我们用这些和的极限形式得出了结论,当 n 趋于无穷大时,最长子区间的长度接近零:

length of arc AB=limmaxΔxk0k=1n1+[f(xk)]2Δxk=ba1+[f(x)]2dx(3)

因为 f(x) 是连续的,所以它的积分存在。

首先,公式(3)不太好记。然而,如果我们用莱布尼兹符号 dy/dx 代替 f(x) ,那么下面直觉的方法将令这个公式更加掌握和记忆。让 s 表示从A 到曲线上某个变化点的弧长,如图3所示。 s 可以由一个很小的增量ds使得 ds 是弧长的微分元素, dx,dy 分别是 x,y 对应的变化量。我们将 ds 看做非常小,小到这段曲线几乎是直的,因此 ds 是直角三角形(称为微分三角形)的斜边。根据毕达哥拉斯定理得

ds2=dx2+dy2(4)

这个简单的方程是计算弧长所有智慧的根源。如果我们求解(4),因子 dx2 提出来并移到根号外得

ds=dx2+dy2=(1+dy2dx2)dx2=(1+dy2dx2)dx(5)


这里写图片描述
图2

AB 的总长度可以看做所有弧元素 ds A B的总和- 或积分。利用(5) 可以得出

length of arc AB=ds=ba(1+dy2dx2)dx(6)

也就是(3)。这个公式告诉我们 x 是积分变量,y可以看做 x 的函数。然而,有时候用y表示积分变量,将 x 看做y 的函数会更加方便。在这种情况下(5) 可以换为

ds=dx2+dy2=(dx2dy2+1)dy2=(dx2dy2+1)dy(7)

因为 y 是积分变量,弧长AB的积分是

ds=dc(dx2dy2+1)dy(8)

有时候它比(6)计算更加简单。

:求出曲线 y2=4x3 在点(0,0) 和 (2,42) 之间的弧长。

:曲线如图4所示


这里写图片描述
图3


这里写图片描述
图4

问题中的弧指的是第一象限的曲线,如果我们求解 y ,那么得到

y=2x3/2sodydx=3x1/2

那么公式(6)变为

length of arc =201+9x=dx=1920(1+9x)1/29dx=1923(1+9x)3/220=227(19191)

对这种计算应该提出一个警告,当我们尝试求解任何熟悉曲线的弧长时,因为(6)中有平方根,所以我们可以无法求出积分。目前,我们是为了能够计算出积分,仔细选择了我们的问题。但这也同时让我们意识到我们迫切需要更多的积分方法。我会在下三篇文章中说明。

注解1:存在这样的例子,在 axb 上曲线 y=f(x) 连续,但是没有长度。这个令人吃惊的事实表明弧长的基本理论比我们想象的要复杂得多。我们的讨论都需要假定函数 y=f(x) 有连续的导数。这种曲线称为光滑曲线,并且”弧”一词通常意味着限制曲线有这种属性。一条光滑曲线在几何上通常描述为”连续的转向切线”。

注解2:一些学生对方程(4)和(5)可能存在这样的印象(他们互相等效)他们是近似解,大概正确,因为微分三角形只是“准三角”,实际所谓的斜边不是一条真正的直线段。可事实不是这样的,这些方程完全正确。我们知道(3)是有效的,所以图3中的弧长 s 可以写成

s=xa1+[f(t)]2dt

t 表示积分变量。很明显s是积分上限为 x 的函数,我们计算它的导数得

dsdx=1+[f(x)]2=1+(dydx)2

和等式(5)等价。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值