无人车路径算法----曲线路径I (贝塞尔曲线)

本文深入探讨了贝塞尔曲线在路径规划中的应用,从定义、伯恩斯坦多项式到曲线的推导和特性,揭示了贝塞尔曲线如何通过控制点影响路径形状,并介绍了曲率连续和相切连续的概念。
摘要由CSDN通过智能技术生成

本篇博客主要介绍一些路径规划中常用的几何曲线,包括贝塞尔曲线(Bezier Curve),样条曲线(Spline Curve)


1. 贝塞尔曲线(Bezier Curve)

1.1 定义

贝塞尔曲线最初是用于汽车主体的设计,后被广泛应用于图形设计和路径规划中。
贝塞尔曲线由首尾起始点以及中间的控制点相互作用生成,其中起始点是曲线的必经点又称为锚点,控制点的作用是用来改变曲线的曲率及形状,n个点对应 n-1阶贝塞尔曲线。

1.2 伯恩斯坦多项式(Bernstein Polynomial)

伯恩斯坦多项式(Bernstein polynomial)逼近连续函数的一系列多项式, 其公式的表达形式与bezier曲线的表达形式相辅相成,因此常用来作为bezier曲线的计算公式。

1.3 公式推导

变量物理意义

  • B ( t ) B(t) B(t)表示 t t t时刻下的点的坐标
  • P 0 P_0 P0表示起点, P n P_n Pn表示终点, P i P_i Pi为控制点

值得注意的是,bezier的相关公式推导是具有强烈的递归性质的, 通过下面的公式多阶公式推导可以看出此特性

一阶贝塞尔曲线
一阶贝塞尔曲线其实就是一条线段,动图如下所示:
在这里插入图片描述

由此开始推导公式:
首先,根据向量计算可得,
B ( t ) = P 0 + ( P 1 − P 0 ) ∗ t ,   t ∈ [ 0 , 1 ] B(t) = P_0 + (P_1 - P_0) * t, \ t \in [0, 1] B(t)=P0+(P1P0)t, t[0,1]
变形后可得,
B ( t ) = ( 1 − t ) P 0 + t P 1 ,   t ∈ [ 0 , 1 ] B(t) = (1 - t)P_0 + t P_1, \ t \in [0, 1] B(t)=(1t)P0+tP1, t[0,1]
上述公式描述了一个连续点构成的直线线段

二阶贝塞尔曲线
二阶贝塞尔曲线是一个抛物线,动图如下图所示:
在这里插入图片描述

其中, P 0 ′ P_0' P0

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值