漫步数学分析三十一——矩阵表示

2 fj/xi 存在的话,定义如下:

fjxi(x1,,xn)=limh0{fj(x1,,xi+h,,xn)fj(x1,,xn)h}

在上篇文章中,我们看到对于 f:RR 而言 Df(x) 只是线性映射,这个事实可以推广到下面的定理。

2 假设 ARn 是一个开集并且 f:ARm 是可微的,那么偏微分 fjxi 存在且线性映射 Df(x) 对于 Rn,Rm 中标准基的矩阵为

f1x1f2x1fmx1f1x2f2x2fmx2f1xnf2xnfmxn

其中每个偏导数都是在 x=(x1,,xn) 处计算出来的,这个矩阵称为 f 的雅克比(Jacobian) 矩阵。

在实际计算中我们通常可以很容易的计算雅克比矩阵。

m=1时我们得到其特殊情况,此时我们有一个 n 变量的实值函数,那么Df 存在矩阵

(fx1fxn)

将导数应用到向量 e=(a1,,an) 上得

Df(x)e=i=1nfxiai

需要强调的是 Df 在每个 xA 处都是线性映射并且 Df(x) 的定义与所用的基无关。如果我们从标准基变到其他即,那么矩阵元素自然会改变。如果查看线性变换矩阵的定义,那么我们将看到矩阵对于新基的列就是导数 Df(x) 应用到 Rn 的新基上,当然线性映射 Df(x) 在不同基之间变换时自身不会发生变化。当 m=1 Df(x) 是一个 1×n 矩阵,元素与 Df(x) 相同的向量称为 f 的梯度(gradient),表示成grad f f ,因此对于

f:ARnR,grad f=(fx1,,fxn)

(有时我们说 grad f 仅仅是 f 中插入逗号!)

f=L 是线性的时候,我们就得到一个非常重要的特殊情况,根据定义可以看出 DL=L ,这是因为线性映射的最佳仿射近似就是线性映射本身,从而在这种情况下 L 的雅克比矩阵就是L 本身的矩阵。另一种有趣的情况是常数映射,实际上我们会看到常数映射导数为零;零是线性映射 f:RnRm ,满足对所有的 xRn,f(x)=0=(0,,0)

1 f:R2R3,f(x,y)=(x2,x3y,x4y2) ,计算 Df

根据定理2, Df(x,y) 是线性映射,其矩阵是

f1xf2xf3xf1yf2yf3y=2x3x2y4x3y20x32x4y

其中 f1(x,y)=x2,f2(x,y)=x3y,f3(x,y)=x4y2

2 L:RnRm 是线性映射(即 L(x+y)=L(x)+L(y),L(αx)=αL(x) ),说明 DL(x)=L

给定 x0,ε>0 ,我们必须找到 δ>0 使得 xx0<δ 意味着

L(x)L(x0)DL(x)(xx0)εxx0

但是 DL(x)=L ,所以左边变为

L(x)L(x0)L(xx0)

根据 L 的线性可知,L(xx0)=L(x)L(x0),所以上式等于零,从而 DL(x)=L 满足定义(对任意 δ>0 )。

3 f(x,y,z)=x(siny)/z ,计算 grad f

grad f=(f/x,f/y,f/z) ,对该例来说

fx=(siny)z,fy=z(cosy)z,fz=x(siny)z2

所以

grad f(x,y,z)=((siny)z,x(cosy)z,x(siny)z2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值