回忆一下,对于
m
的所有值,级数
收敛到
em
。考虑函数
其中
m>0
。因为
m>0
,所以
p(x)≥0
且
即,
p(x)
满足成为离散随机变量pmf的条件。有形如
p(x)
pmf的随机变量满足参数为
m
的泊松分布,这样的
令
- g(1,h)=λh+o(h) ,其中 λ 是正常数且 h>0 。
- ∑∞x=2g(x,h)=o(h) 。
- 不重叠区域的变化量是独立的。
假设1,3说明在短区间
h
中一个变化量的概率与其他不重叠区间的变化是独立的且近似与区间长度成比例。假设2的实值为在同样短的区间
那么
如果取
h→0
时的极限,我们有
这个微分方程的解为
即函数
g(0,w)=ce−λw
满足微分方程。条件
g(0,0)=1
表明
c=1
;所以
如果
x
是正整数,我们取
从而我们有
且
x=1,2,3,…
。利用数学归纳法可得在边界条件
g(x,0)=0
的约束下,这些微分方程的解分别为
因此区间
w
内
泊松分布的mgf为
因为
且
所以
且
即泊松分布满足
μ=σ2=m>0
,为此泊松pmf经常写成
故泊松pmf的参数
m
就是均值
例1:
假设
X
满足
这个分布的方差为
σ2=μ=2
。如果我们想计算
P(1≤X)
,我们有
例2:
随机变量
X
的mgf为
那么
X
满足
或者查表
例3:
一尺长的电线有一个缺陷的概率为
11000
,两个或多个缺陷的概率为零。令随机变量
X
表示三百尺电线的缺陷数,如果我们假设不重叠区间内缺陷数是独立的,那么泊松过程的假设近似为
查表可得
泊松分布满足下面重要的加法性质。
定理1: 假设 X1,…,Xn 是独立随机变量且假设 Xi 满足参数为 mi 的泊松分布,那么 Y=Σni=1Xi 满足参数为 Σni=1mi 的泊松分布。
证明:
通过确定
Y
的mgf我们可以得到该结论。利用
根据mgf的唯一性我们得出
Y
满足参数为
例4:
假设例3中一捆电线长为3000尺,基于例子中的信息,我们期望一捆中3个缺陷且5个或更多缺陷的概率为0.185。假设在一次抽样中,随机选了三捆并且计算了缺陷的均值,现在假设我们想确定三个观测的均值为5或更多缺陷的概率,令
Xi
表示第
i
捆电线的缺陷数,其中
因此一捆电线有5个或更多缺陷(概率为0.185)没什么奇怪,但是三捆独立的电线平均有5个或更多缺陷就不正常了(概率为0.041)。