漫步数理统计二十三——泊松分布

回忆一下,对于 m 的所有值,级数

1+m+m22!+m33!+=x=0mxx!

收敛到 em 。考虑函数

p(x)={mxemx!0x=0,1,2,elsewhere

其中 m>0 。因为 m>0 ,所以 p(x)0

xp(x)=x=0mxemx!=em0mxx!=emem=1

即, p(x) 满足成为离散随机变量pmf的条件。有形如 p(x) pmf的随机变量满足参数为 m 的泊松分布,这样的p(x)称为参数为 m 的泊松pmf。

1经验表明泊松分布在许多应用中能得到满意的结果。例如令随机变量 X 表示放射性物质在规定的时间间隔内在规定的区域内发射的α粒子总数,对于何时的 m 值,会发现X满足泊松分布。再有令 X 表示制成品的产品数,像冰箱门,在测试了许多门后,对于合适的m值,我们发现 X 满足泊松分布。单位时间内交通事故的总数也经常假设为满足泊松分布的随机变量。我们可以将这些案例都看成一个过程,该过程在固定的间隔(时间或空间或其他)内产生一些变化,如果增过程导致泊松分布,那么该过程称为泊松分布,接下来列举一些确保为泊松过程的假设。

g(x,w)表示在每个长度为 w 的间隔内x变化量的概率,进一步令符号 o(h) 表示使得 limh0[o(h)/h]=0 的任意函数;例如 h2=o(h),o(h)+o(h)=o(h) 。泊松假定如下:

  1. g(1,h)=λh+o(h) ,其中 λ 是正常数且 h>0
  2. x=2g(x,h)=o(h)
  3. 不重叠区域的变化量是独立的。

假设1,3说明在短区间 h 中一个变化量的概率与其他不重叠区间的变化是独立的且近似与区间长度成比例。假设2的实值为在同样短的区间h内两个或更多变化量的概率基本等于零。如果 x=0, 我们取 g(0,0)=1 。根据假设1,2,在区间 h 内至少一个变化量的概率为λh+o(h)+o(h)=λh+o(h),从而在区间 h 内零变化量的概率为1λho(h),因此在区间 w+h 内零变化量的概率 g(0,w+h) 等于区间 w 内零变化量的概率g(0,w)与不重叠区间 h 内零变化量的概率[1λho(h)]的乘积(根据假设3),即

g(0,w+h)=g(0,w)[1λho(h)]

那么

g(0,w+h)g(0,w)h=λg(0,w)o(h)g(0,w)h

如果取 h0 时的极限,我们有

Dw[g(0,w)]=λg(0,w)

这个微分方程的解为

g(0,w)=ceλw

即函数 g(0,w)=ceλw 满足微分方程。条件 g(0,0)=1 表明 c=1 ;所以

g(0,w)=eλw

如果 x 是正整数,我们取g(x,0)=0,假设表明

g(x,w+h)=[g(x,w)][1λho(h)]+[g(x1,w)][λh+o(h)]+o(h)

从而我们有

g(x,w+h)g(x,w)h=λg(x,w)+λg(x1,w)+o(h)h


Dw[g(x,w)]=λg(x,w)+λg(x1,w)

x=1,2,3, 。利用数学归纳法可得在边界条件 g(x,0)=0 的约束下,这些微分方程的解分别为

g(x,w)=(λw)xeλwx!,x=1,2,3,

因此区间 w X的变化量满足参数 m=λw 的泊松分布。

泊松分布的mgf为

M(t)=xetxp(x)=x=0etxmxemx!=emx=0(met)xx!=ememet=em(et1)

因为

M(t)=em(et1)(met)


M(t)=em(et1)(met)+em(et1)(met)2

所以

μ=M(0)=m


σ2=M(0)μ2=m+m2m2=m

即泊松分布满足 μ=σ2=m>0 ,为此泊松pmf经常写成

p(x)={μxeμx!0x=0,1,2,elsewhere

故泊松pmf的参数 m 就是均值μ

1 假设 X 满足μ=2的泊松分布,那么 X 的pmf为

p(x)={2xe2x!0x=0,1,2,elsewhere

这个分布的方差为 σ2=μ=2 。如果我们想计算 P(1X) ,我们有

P(1X)=1P(X=0)=1p(0)=1e2=0.865

2 随机变量 X 的mgf为

M(t)=e4(et1)

那么 X 满足μ=4的泊松分布。用上例的方法可得

P(X=3)=43e43!=323e4

或者查表

P(X=3)=P(X3)P(X2)=0.4330.238=0.195

3 一尺长的电线有一个缺陷的概率为 11000 ,两个或多个缺陷的概率为零。令随机变量 X 表示三百尺电线的缺陷数,如果我们假设不重叠区间内缺陷数是独立的,那么泊松过程的假设近似为λ=11000,w=3000,因此 X 近似满足均值为3000(11000)=3的泊松分布。例如3000尺电线有五个或更多缺陷的概率为

P(X5)=k=53ke3k!

查表可得

P(X5)=1P(X4)=10.815=0.185

泊松分布满足下面重要的加法性质。

1 假设 X1,,Xn 是独立随机变量且假设 Xi 满足参数为 mi 的泊松分布,那么 Y=Σni=1Xi 满足参数为 Σni=1mi 的泊松分布。

通过确定 Y 的mgf我们可以得到该结论。利用Xi的独立性与 Xi 的mgf,我们有

MY(t)=E(etY)=E(eΣni=1tXi)=E(i=1netXi)=i=1nE(etXi)=i=1nemi(et1)=eΣni=1mi(et1)

根据mgf的唯一性我们得出 Y 满足参数为Σni=1mi的泊松分布。

4 假设例3中一捆电线长为3000尺,基于例子中的信息,我们期望一捆中3个缺陷且5个或更多缺陷的概率为0.185。假设在一次抽样中,随机选了三捆并且计算了缺陷的均值,现在假设我们想确定三个观测的均值为5或更多缺陷的概率,令 Xi 表示第 i 捆电线的缺陷数,其中i=1,2,3,那么 Xi 满足参数为3的泊松分布, X1,X2,X3 的均值为 X¯=31Σ3i=1Xi ,可以儿科表示成 Y/3 ,其中 Y=Σ3i=1Xi 。根据上面的定理,因为不同捆之间是独立的,所以 Y 满足参数Σ3i=13=9的泊松分布。查表可得

P(X¯5)=P(Y15)=1P(Y14)=10.959=0.041

因此一捆电线有5个或更多缺陷(概率为0.185)没什么奇怪,但是三捆独立的电线平均有5个或更多缺陷就不正常了(概率为0.041)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值