不见你会想你,
想随时献殷勤,希望你像蜜桃般甜美;
想阅读更多书,期待你我能赌书泼茶。
我想我们已互相知道对方的心意,
即便相隔万里也能感受到远方心中的牵挂。
希望我们互相是对的人,
一直彼此宠爱。
——畅宝宝的傻逼哥哥
在许多优化方法中,需要目标函数的梯度信息,这个信息由 f(x) 对 n 个变量的一阶与二阶导组成的。
如果
其中
如果
f(x)∈C2
,即
f(x)
有连续的二阶偏导,
f(x)
的海森矩阵定义为:
因此海森矩阵可以写为:
对函数
f(x)∈C2
这是因为求导是线性运算,由此可得 H(x) 是 n×n 对称方阵。
点 x=xk 处的梯度与海森矩阵用 g(xk),H(xk) 表示,或者用简化的符号 gk,Hk 表示。有时候在不至于混淆的前提下, g(x),H(x) 简化成 g,H 。
梯度与海森矩阵简化了优化过程,但是在某些应用中求解他们非常耗时且代价比较大,或者 f(x) 无法求偏导,对于这种应用,最好用不需要求梯度的方法。
梯度方法,即基于梯度信息的方法可能只需要 g(x) 或者 g(x),H(\textbf{x}) 都需要,对于后者,可能需要求解矩阵 H(x) 的逆,这会带来数值精确性问题且很耗时,一般我们会避免这种方法。