漫步最优化八——梯度信息






便


——

在许多优化方法中,需要目标函数的梯度信息,这个信息由 f(x) n 个变量的一阶与二阶导组成的。

如果f(x)C1,即 f(x) 有连续的一阶偏导, f(x) 的梯度定义为:

g(x)=[fx1 fx2  fxn]T=f(x)

其中

=[x1 x2  xn]T

如果 f(x)C2 ,即 f(x) 有连续的二阶偏导, f(x) 的海森矩阵定义为:

H(x)=gT={Tf(x)}

因此海森矩阵可以写为:

H(x)=2fx212fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fx2n

对函数 f(x)C2

2fxixj=2fxjxi

这是因为求导是线性运算,由此可得 H(x) n×n 对称方阵。

x=xk 处的梯度与海森矩阵用 g(xk),H(xk) 表示,或者用简化的符号 gk,Hk 表示。有时候在不至于混淆的前提下, g(x),H(x) 简化成 g,H

梯度与海森矩阵简化了优化过程,但是在某些应用中求解他们非常耗时且代价比较大,或者 f(x) 无法求偏导,对于这种应用,最好用不需要求梯度的方法。

梯度方法,即基于梯度信息的方法可能只需要 g(x) 或者 g(x),H(\textbf{x}) 都需要,对于后者,可能需要求解矩阵 H(x) 的逆,这会带来数值精确性问题且很耗时,一般我们会避免这种方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值