漫步最优化十三——驻点









——

如果考虑的极值点类型(即极大值,极小值)位于可行域的内部,那么我们称为它们驻点,因为在这些点上 g(x)=0 ,还有一种驻点是鞍点。

1 R 是可行域,我们称x¯R为鞍点,如果

  1. g(x¯)=0
  2. x¯ 既不是极大值,也不是极小值。

E2 中的鞍点如图1所示。


这里写图片描述
图1

鞍点 x¯ 附近的任意点 x=x¯+αdR ,根据泰勒级数可得

f(x)=f(x)+12α2dTH(x¯)d+o(α2d2)

其中 g(x¯)=0 。根据鞍点的定义,必须存在方向 d1,d2 使得

f(x¯+αd1)<f(x¯)f(x¯+αd2)<f(x¯)

因为 x¯ 既不是极小值也不是极大值,所以当 α0 时我们有

dT1H(x¯)d1<0dT2H(x¯)d2>0

因此,矩阵 H(x) 是不定的。

驻点是局部的并通过下面方法得到:

  • 找出使得 g(xi¯)=0 的点 xi
  • 求出海森矩阵 H(xi)
  • 对于每个点 xi 确定 H(xi) 的特征

如果 H(xi) 是正(负)定的,那么 xi 是极小(大)值;如果 H(xi) 是不定的,那么 xi 是鞍点。如果 H(xi) 是半正(负)定的,那么 xi 可能是极小(大)值;如果 H(xi)=0 ,那么 xi 可能是极大值也可能是极小值,因为必要条件都满足。很明显,如果 H(xi) 是半定的,那么我们没有充分的信息来判断驻点的特征,一个可行的方法是推导出 f(x) 的三阶导数,然后计算泰勒级数的第四项,如果这项等于零,那么就需要计算第五项,依次下去。另一种更实际的方法是计算 f(xi+ej),f(xjej) ,其中 j=1,2,,n,ej 是一个向量,其元素为

ejk={0εfor kjfor k=j

然后判断是否满足极大值或极小值的定义。

通过前面的讨论可以看出,判别函数 f(x) 驻点的问题可以变成表征海森矩阵的问题,这个问题可以用下面的定理求解。

1 实对称 n×n 矩阵 H 是正定,半正定等,如果对每个相同阶数的非奇异矩阵 B

Ĥ =BTHB

给出的矩阵 H 是正定,半正定等。

如果 H 是正定,半正定等,那么对所有的 d0

dTĤ d=dT(BTHB)d=(dTBT)H(Bd)=(Bb)TH(Bd)

因为 B 是非奇异的, Bd=d̂  是非零向量,那么对所有 d0

dĤ d=d̂ THd̂ >0,0,etc

因此

Ĥ =BTHB

是正定,半正定等。

2

  1. 如果 n×n 矩阵 B 是非奇异的且
    Ĥ =BTHB

对称矩阵,对角元素为 h1^,h2^,,hn^ ,那么 H 是正定,半正定,负定,半负定矩阵,如果对 i=1,2,,n,ĥ i>0,0,0,<0 。否则的话,如果一些 ĥ i 是正的,一些是负的,那么 H 是不定的。

  1. (a)的逆也为真,即如果 H 是正定,半正定等,那么 ĥ i>0,0 等,如果 H 是不定的,那么某些 ĥ i 是正的,某些是负的。

(a)对所有 d0

dTĤ d=d21ĥ 1+d22ĥ 2++d2nĥ n

因此如果 ĥ i>0,0 等,那么

dTĤ d>0,0,ect

Ĥ  是正定,半正定等。如果某些 ĥ i 是正的,一些是负的,那么我们能找到 d 产生正的或负的 dTĤ d ,那么 Ĥ  是不定的。接下来因为 Ĥ =BTHB ,根据上面的定理得到如果 ĥ i>0,0,ect ,那么 H 是正定,半正定等。

(b)假设 H 是正定,半正定等,因为 Ĥ =BTHB ,根据上面的定理可知 Ĥ  是正定,半正定等。如果 d 是一个向量,元素 dk

dk={01for kifor k=i

那么

dTĤ d=hi^>0,0

如果 H 是不定的,根据上面的定理可知 Ĥ  是不定的,因此某些 ĥ i 必须为正,某些必须为负。

通过在矩阵 H 上执行行运算或列运算就能得到对角矩阵 Ĥ  ,例如某行的k倍加到其他行,某列的k倍加到其他列,对于对称矩阵,这些运算通过应用初等变换就能实现,即 Ĥ  通过如下方式得到

Ĥ =E3E2E1HET1ET2ET3

其中 E1,E2, 是初等矩阵,典型的初等矩阵如

Ea=10001k001


Eb=1000m10000100001

如果 Ea 左乘一个 3×3 的矩阵,效果就是第二行的 k 倍加到第三行,如果Eb右乘一个 4×4 的矩阵,效果就是第一列的 m 倍加到第二列。如果

B=ET1ET2ET3

那么

BT=ET3ET2ET1

因此

Ĥ =BTHB

因为初等矩阵是非奇异的,所以 B 是非奇异的,故Ĥ 是正定,半正定等,如果 H 是正定,半正定等。

另一个表征海森矩阵的定理如下:

3

  1. 如果 H 是实对称矩阵,那么存在正交矩阵 U 使得
    Λ=UTHU

是对角矩阵,其对角元素就是 H 的特征值。

  1. H 的特征值是实数。

对于实酉矩阵,我们有 UTU=In ,其中

In=100010001

n×n 单位矩阵,因此 detU=±1 ,即 U 是非奇异的。根据定理1,如果 H 是正定,半正定等,那么 Λ 是正定,半正定,因此 H 通过求出其特征值,然后检查它们的符号就能进行表征。

另一种表征方阵 H 的方法是基于它的主子式与顺序主子式,该方法的细节具体如下:

4

  1. 如果 H 是半正定或正定矩阵,那么
    detH0 or >0
  2. H 是正定矩阵,当且仅当其所有顺序主子式均为正,例如 detHi>0 for i=1,2,,n
  3. H 是半正定矩阵,当且仅当其所有主子式均为正,例如对 {l1,l2,,li} 所有可能的选择 detH(l)i0 for i=1,2,,n
  4. H 是负定矩阵,当且仅当 H 的所有顺序主子式均为正,例如 det(-Hi)>0 for i=1,2,,n
  5. H 是半负定矩阵,当且仅当 H 的所有主子式均为正,例如对 {l1,l2,,li} 所有可能的选择 det(-H(l)i)0 for i=1,2,,n
  6. H 是不定矩阵,如果(c)(e)都不满足。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值