漫步最优化十九——封闭算法








——

前面的文章中,我们提到了点到点算法的连续性,而点到点以及点到集合算法有个更加一般的性质:封闭性,对于点到点算法,这个性质就弱化为连续性。

1

  • 对于从空间 X 到空间X1的点到集合算法A,如果假设
    xkx̂ for xkXxk+1x1^for xk+1A(xk)

意味着

x1^A(x̂ )

那么称算法在点 x̂ X 处封闭。其中符号 xkx̂  表示序列 {xk}k=1 收敛到极限 x̂ 

  • 对于点到集合算法A,如果对X中的每个点都是封闭的,那么称算法在X上封闭。

这个定义如图1所示,如果 x̂ ,x1^ 之间存在实线,那么称算法A在点 x̂  处封闭,如果对所有 x̂ X 都存在实线,那么A在X上封闭。

1 算法A定义为

xk+1=A(xk)={12(xk+2)14xkfor xk>1for xk1

如图2所示,说明算法在 x̂ =1 处不封闭。

令序列 {xk}k

xk=1+12k+1

由此得到的序列为

{xk}k=0={1.5,1.25,1.125,,1}

因此

xkx̂ =1


这里写图片描述
图1

对应的序列 {xk+1}k=0

xk+1=A(xk)=12(xk+2)

所以

{xk+1}k=0={1.75,1.625,1.5625,,1.5}

所以

xk+1x̂ 1=1.5

接下来

A(x̂ )=14

且因为 x̂ 1=1.5 ,我们有

x̂ 1A(x̂ )

故A在 x̂ =1 处不封闭。这个问题是由于 A(xk) xk=1 处不连续造成的。


这里写图片描述
图2

2 算法A定义为

xk+1=A(xk)=x2kfor <xk<

说明 A 是封闭的。

{xk} 是收敛到 x̂  的序列,例 xkx̂  ,那么 {xk+1}={A(xk)}={x2k} 是收敛到 x̂ 2 的序列,例 x2kx̂ 1=x̂ 2 。因为 x̂ 1=A(x̂ ) ,所以我们可以得出对所有的 x̂ ,<x̂ < ,A是封闭的。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值