大数据与机器学习

1、大数据的定义(3V):
volume(大量数据)
variety(多样性)
velocity(时效性)

1.2 Hadoop的特性
可扩展性
经济性
弹性
可靠性
1.3 HDFS分布式文件系统
NameNode负责管理、维护、控制读写
HDFS设计的前提和目标:
1、硬件故障是常态而不是异常---容错能力-自动恢复
2、Streaming 流式数据存取
批处理,有点:提高存取大数据的能力,确定,牺牲了响应时间
3、大数据集---cluster集群架构
4、简单的一致性模型---一次写入多次读取
5、移动“计算”比移动“数据”成本更低----将计算功能在接近数据的服务器中运行,而不是搬运数据。
6、跨硬件与软件平台

HDFS文件存储架构:
1、文件分割 :一个Block 64M
2、区块副本策略--默认复制成3份--维持3份副本策略
3、机架感知

1.4 Hadoop MapReduce
MapReduce 采用分布式计算的技术
1:将任务分割成多个小任务,每台服务器分别运行。
2:resuce将所有服务器的运算结果汇总返回。

1.5 Spark :基于内存的计算框架(大幅度提升性能)
特点:
1、命令周期短
2、易于开发程序
3、Hadoop兼容
4、可在个平台运行

展开阅读全文

没有更多推荐了,返回首页