【计算机视觉】Lecture 18:广义的立体视觉:对极几何

广义的立体视觉

主要思想:任何两张有重叠视图的图像,它们都可以被视为一对立体图像

我们只需要弄清楚这两个视图是如何关联的

视觉中一些最“漂亮”的数学问题是描述多个视图之间的几何关系。

回忆:对极约束(Epipolar Constraint)

重要的立体视觉概念:

给定左图像上的一个点,我们不必在整个右图像中搜索对应的点

“对极约束”将搜索空间缩小为一条一维的直线。

回顾:简单的立体视觉系统

在这里插入图片描述

回顾:对极约束

在这里插入图片描述

相应的特征被限制在共轭的极线上(在我们简单配置的例子中是位于同一行上的)

广义的立体视觉

在这里插入图片描述

一般来说,相机可以通过任意变换(R,T)进行关联:对极矩阵

一般来说,相机内参可能是不同的,甚至是未知的:基础矩阵

对极几何

在这里插入图片描述

Ol, Or的连线与两个像平面的交点为el, er,称为极点(Epipoles)
Ol, Or, P三个点确定的平面称为极平面(Epipolar plane)
极平面与两个像平面的相交线plel,prer称为极线(Epipolar line)
对应的点在“共轭”的极线上:对极约束

可视化

在这里插入图片描述

光线到场景中的点

在这里插入图片描述

将线系在管脚上,并将焦点连接到场景点
对另一个观察者来说这会是什么样子?

从第二个观察者看到的光线

在这里插入图片描述

从第一个观察者看到的光线

在这里插入图片描述

对极几何

在这里插入图片描述

左边
极点:相机1所看到的相机2的位置。

右边
极点:相机2所看到的相机1的位置

对极几何

在这里插入图片描述

对应点位于共轭极线上

对极几何

在这里插入图片描述

共轭极线在图像上产生了广义的一维“扫描线”序列(类似于图像中行的传统扫描线序列)

极点不一定要在图像中

在这里插入图片描述

对极几何

在这里插入图片描述

Ol, Or的连线与两个像平面的交点为el, er,称为极点(Epipoles)
Ol, Or, P三个点确定的平面称为极平面(Epipolar plane)
极平面与两个像平面的相交线plel,prer称为极线(Epipolar line)
对应的点在“共轭”的极线上:对极约束

对极约束

在这里插入图片描述

给定左特征点pl:

  1. 考虑它的极线:plel;
  2. 找到极平面Ol, pl, el;
  3. 极平面和右像平面的交叉线为右极线
  4. 在右极线上寻找pr

本质矩阵Essential Matrix

在这里插入图片描述

回忆:通过(R,T)将世界坐标系到相机坐标系的变换。在这里,我们从一个相机转变到另一个相机。

在这里插入图片描述

极线约束:Pl,T和Pl-T是共面的

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

向量积作为矩阵乘法

在这里插入图片描述

本质矩阵

在这里插入图片描述
本质矩阵:在这里插入图片描述

那么在这里插入图片描述

本质矩阵的性质

在这里插入图片描述

  • rank为2
  • 仅取决于外参(R和T)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值