极端外点率下鲁棒配准的多项式时间解

在这里插入图片描述
论文地址
论文视频

文章导读

为什么要解读这篇文章?因为之前接连介绍该作者的两个工作,TEASER | 快速且可证明的点云配准算法和代码解读基于四元数的存在外点Wahba问题的可证明最优解,前者的未知有界噪声,几何不变测量,内点选择最大团和SDP松弛思想均来自该工作,而后者和该工作共同组成了TEASER。所以为了彻底理解TEASER,就不得介绍本文。本文使用截断最小二乘将点云配准问题转化为优化问题,然后设计出可处理高外点率的多项式时间算法进行相对变换(尺度,旋转和平移)的计算。

摘要

提出了一种在存在大量外点的情况下两组3D点的鲁棒配准方法。第一个贡献是使用截断最小二乘(TLS)代价重新建模配准问题,该代价使得估计对大量外点不敏感。第二个贡献是一个解耦旋转、平移和尺度估计的通用框架,该框架允许级联地求解这三个量。但是每个子问题(尺度,旋转和平移估计)仍然是非凸和组合的,所以第三个贡献是证明(i)adaptive voting机制可以在多项式时间内精确地求解TLS尺度和分量形式的平移估计,(ii)TLS旋转估计可以被松弛为半定规划,并且该松弛实际上是紧的,甚至在极端外点率情况下也仍然是紧的。将提出的算法命名为TEASER(截断最小二乘估计和半定松弛),并在标准的3D配准基准上验证该算法,实验结果证明其超越了RANSAC和鲁棒的局部优化方法,比Branch-and-Bound方法效果更好。与此同时,这还是一个多项时间算法,十分快速。此外,TEASER可以处理高达99%外点率的情况,同时给出一个高精度的解。

动机

  1. 能够全局地求解配准问题,不需要依赖初始值;
  2. 能够忍受极端的外点数量,如99%的测量值都是外点;
  3. 能够在多项时间内运行;
  4. 能够提供正式的性能保证,也就是全局最优性保证。

主要贡献

  1. 使用截断最小二乘(TLS)代价重新建模配准问题,该代价对大量外点不敏感。将产生的问题称为截断最小二乘配准(TR)问题;
  2. 分离尺度,旋转和平移估计的通用框架。该方法的创新性有三个方面:(i)开发估计尺度的不变测量,(ii)在未知但有界噪声的框架下,将分离形式化。解耦使得可以级联地求解尺度,旋转和平移;
  3. 证明(i)使用adaptive voting机制能够在多项式时间内精确地求解标量情况的TLS估计,这样可以高效地估计尺度和(分量形式的)平移;(ii)通过寻找由不变测量定义的图的最大团来修剪大量的外点;(iii)建立一个紧的半定规划(SDP)松弛来估计旋转,(iv)在SDP松弛的性能上提供每个实例的界限。这是第一个可计算性能保证的外点鲁棒配准问题的多项式时间算法。

算法流程

  1. 使用截断最小二乘代价函数的鲁棒配准
    1.1 原始问题
    给定两组点云 A = { a i } i = 1 N \mathcal{A}=\left\{ a_i \right\}^N_{i=1} A={ai}i=1N B = { b i } i = 1 N \mathcal{B}=\left\{ b_i \right\}^N_{i=1} B={bi}i=1N,满足:
    在这里插入图片描述
    其中, ϵ i \epsilon_i ϵi为测量噪声, o i o_i oi为inlier-outlier向量(内点为0向量,外点为任意向量)。
    1.2 截断最小二乘配准模型
    当一部分对应点云是外点时,需要引入鲁棒的模型去处理它们,这里引入截断最小二乘配准模型:
    在这里插入图片描述
  2. 解耦尺度,旋转和平移估计
    这部分内容是这篇文章的一大贡献,利用仿射变换具有空间距离不变性的思想,也就是分别来自两组点云的两个点之间的线段长度是(近似)相等的,进而重新转换测量值以得到尺度、旋转和平移变换的不变量。
    2.1 平移不变测量(TIM)
    点的绝对位置是依赖于平移量 t t t,但是两个点之间的相对位置对于平移量是不变的,那么求取两组点 a i a_i ai b i b_i bi 之间的相对位置就抵消掉了平移量 t t t
    在这里插入图片描述
    因为,平移不变测量定义为 a ˉ i j = . a j − a i \bar{a}_{ij} \overset{.}{=} a_j-a_i aˉij=.ajai b ˉ i j = . b j − b i \bar{b}_{ij} \overset{.}{=} b_j-b_i bˉij=.bjbi,它们满足以下模型:
    在这里插入图片描述
    可以看到这个模型只依赖于未知的尺度 s s s 和旋转量 R R R,该不变量思想如图所示
    在这里插入图片描述
    2.2 平移和旋转不变测量(TRIM)
    TIM 还是依赖于旋转量 R R R,但TIM的模长对于旋转量 R R R 和平移量 t t t 都是不变的,因此首先计算 TIM 的范数:
    在这里插入图片描述
    这里使用有界噪声,那么就可以得到:
    在这里插入图片描述
    然后将上式两边同时除以 ∣ ∣ a ˉ i j ∣ ∣ ||\bar{a}_{ij}|| aˉij,就可以得到新的不变测量值 s i j = . ∣ ∣ b ˉ i j ∣ ∣ ∣ ∣ a ˉ i j ∣ ∣ s_{ij} \overset{.}{=} \frac{||\bar{b}_{ij}||}{||\bar{a}_{ij}||} sij=.aˉijbˉij
    在这里插入图片描述
    可以看到这个测量值仅仅依赖于未知的尺度 s s s,该不变量思想如图所示
    在这里插入图片描述
    2.3 上述不变测量值的总结
    在这里插入图片描述
  3. 配准算法:截断最小二乘估计和半定松弛(TEASER)
    3.1 鲁棒尺度估计
    使用平移和旋转不变测量 s k s_k sk 和估计尺度 s ^ \hat{s} s^,采用第4部分介绍的adaptive voting 算法进行估计:
    在这里插入图片描述
    3.2 鲁棒旋转估计
    使用上式得到的尺度估计 s ^ \hat{s} s^ 和平移不变测量TIM估计旋转 R ^ \hat{R} R^,采用第5部分介绍的半定松弛和快速证实算法进行估计:
    在这里插入图片描述
    3.3 鲁棒平移估计
    在截断最小二乘配准模型中使用上面得到的尺度估计 s ^ \hat{s} s^ 和旋转估计 R ^ \hat{R} R^,从 ( a i , b i ) (a_i,b_i) (ai,bi) 估计粗平移 t ^ \hat{t} t^ 的三个分量,采用第4部分介绍的 adaptive voting 算法进行三个分量的估计:
    在这里插入图片描述
    3.4 TEASER算法
    在这里插入图片描述
  4. 尺度,旋转和平移三个子问题的具体求解
    4.1 鲁棒的尺度估计
    给定标量尺度 s s s,定义一致集 C ( s ) = { k : ( s − s k ) α k 2 ≤ c ˉ 2 } \mathcal{C}(s)=\left\{ k: \frac{(s-s_k)}{\alpha^2_k} \le \bar{c}^2 \right\} C(s)={k:αk2(ssk)cˉ2}。对任何 s s s,最多有 2 K − 1 2K-1 2K1 个不同的非空一致集,将这些一致集命名为 C 1 , . . . , C 2 K − 1 \mathcal{C_1},...,\mathcal{C_{2K-1}} C1,...,C2K1,那么可以通过枚举公式(6)的解:
    在这里插入图片描述
    上式可以直接采用 adaptive voting 算法来求取
    在这里插入图片描述
    上述算法第4行见Fig. 3(a),第6、12行见Fig. 3(b)
    在这里插入图片描述
    4.2 鲁棒的旋转估计
    这部分是本文的另一大贡献,设计一个计算旋转估计的紧的凸松弛,并且该松弛对于高外点率情况仍然能够保持紧度。
    4.2.1 二值模型和克隆
    引入辅助的二值变量 θ k \theta_k θk,将(7)改写为:
    在这里插入图片描述
    然后使用合适的正交矩阵代替二值变量,将(10)改写为以下二值克隆问题:
    在这里插入图片描述
    4.2.2 凸松弛
    将(11)中所有未知变量堆叠起来,组成一个 3 × 3 ( K + 2 ) 3 \times 3(K+2) 3×3(K+2) 矩阵 X = [ I 3 , R , R 1 , . . . , R K ] X=[I_3,R,R_1,...,R_K] X=[I3,R,R1,...,RK],然后可以发现矩阵 Z = X X T Z=XX^T Z=XXT 的元素包含所有 R R R R K R_K RK 的线性项和二次项:
    在这里插入图片描述
    进一步发现(11)中的目标函数和约束都可以使用矩阵 Z Z Z 的函数来表示,并且 Z Z Z 是秩为3的半正定矩阵,那么就可以使用 Z Z Z 来改写问题(11),从而设计出一个凸松弛:
    在这里插入图片描述
    其中用到的技巧是在添加冗余约束((13)中最后两个约束)和舍弃秩约束( r a n k ( Z ) = 3 rank(Z)=3 rank(Z)=3),因此(13)是(11)的凸松弛,可以使用凸算子在多项式时间内求解得到最优解 Z ∗ Z^* Z。如果 Z ∗ Z^* Z 的秩为3,可以将其分解为 Z ∗ = ( X ∗ ) T ( X ∗ ) Z^*=(X^*)^T(X^*) Z=(X)T(X) X ∗ = . [ I 3 , R ∗ , R 1 ∗ , . . . , R K ∗ ] X^*\overset{.}{=}[I_3,R^*,R^*_1,...,R^*_K] X=.[I3,R,R1,...,RK] 是矩阵 Z ∗ Z^* Z 的第一行矩阵块,并且 R ∗ , R 1 ∗ , . . . , R K ∗ R^*,R^*_1,...,R^*_K R,R1,...,RK 是(11)的最优解。
    这里作者并没有给出这个凸松弛紧度的分析,也就是没有从理论上证明该凸松弛是紧的,而是通过后续的实验结果从经验上说明该松弛是紧的(也就是产生秩为3的解)。那么问题是,如果该凸松弛得到的解不是紧的,即 Z ∗ Z^* Z 的秩不为3,该怎么办?其实可以通过将 Z ∗ Z^* Z 投影到流形 O ( 3 ) O(3) O(3) 得到结果解的次优程度的上界,作为旋转估计 R ^ \hat{R} R^

    4.3 鲁棒的平移估计
    类似于4.1,同样可以使用 adaptive voting 算法来求解平移估计,也就是使用三次算法2分别求解平移向量的三个分量 t ^ j \hat{t}_j t^j,得到每个分量的估计值,最终组成平移估计值 t ^ = [ t ^ 1   t ^ 2   t ^ 3 ] T \hat{t}=[\hat{t}_1 \ \hat{t}_2 \ \hat{t}_3]^T t^=[t^1 t^2 t^3]T
    在这里插入图片描述

主要实验结果

  1. 标准数据集的benchmarking
    未知尺度情况下,与Fast Global Registration (FGR)、Guaranteed Outlier REmoval (GORE) 和RANSAC两种变体进行精度的比较,分别评估尺度,旋转和平移误差
    在这里插入图片描述
  2. 极端外点率(外点率为95%-99%)的测试
    在这里插入图片描述
  3. 目标位姿估计和定位
    输入为含噪声的FPFH特征描述子建立的对应点,其中含有大量外点(蓝色线),绿色线为内点,红色部分为最终配准的目标
    在这里插入图片描述

总结

这个工作提出了一个基于截断最小二乘模型计算相对变换(尺度,旋转和平移)的算法,用于极端外点率情况的点云配准问题。虽然该方法对外点很鲁棒,计算速度也比较快,但也是存在一些问题和改进点的:

  1. 实验中问题规模不大,这里受限制的原因是通用的SDP算子在大规模问题上会计算很慢,可以预见该方法在大规模点云配准上会表现不佳,作者也没有给出算法的效率测试,所以可以通过设计特定的SDP算子来实时地求解大规模配准问题,可以参考 IJRR18 的经典论文 “SE-Sync: a certifiably correct algorithm for synchronization over the Special Euclidean group.”;
  2. 旋转估计中使用的凸松弛,并不是一个经过理论证明(certifiable)的紧凸松弛,不过作者在之后的TRO20 TEASER 工作中对其进行了证明,从理论上分析和保证了紧度。
    该工作使用的估计理论中的未知但有界噪声,几何中的不变测量,图理论中的内点选择最大团和优化中的SDP松弛这些理论和技巧均出现在之前介绍过的作者TRO20 TEASER工作中;该工作的旋转估计部分在作者ICCV2019 “A Quaternion-based Certifiably Optimal Solution to the Wahba Problem with Outliers”中进行了改进,即将旋转参数化为四元数。所以该工作和ICCV2019共同组成了TEASER的前置工作,说明了作者这一系列工作的连贯性,并且这些工作都是理论和开源效果俱佳,非常值得关注和学习。
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值