简答题文本自动评分

本文介绍了一种用于评估中文答案相似性的算法,通过中文分词与向量余弦算法结合,实现用户答案与标准答案的自动评分,包括关键词双向匹配与文本相似度计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要求是这样的:

给定一段中文答案, 和标准的中文文字的答案做比对,最终得到完整的分数.

 

因为用户的答案中涉及到中文, 所以就必须使用中文分词器, 最终选定的是HanLP ,非常的方便, 资源链接如下:

https://github.com/hankcs/HanLP/tree/1.x  可以自行学习使用.

首先项目中引入HanLP的maven坐标:

<dependency>
    <groupId>com.hankcs</groupId>
    <artifactId>hanlp</artifactId>
    <version>portable-1.7.7</version>
</dependency>

 

我们使用HanLP分词之后, 使用 向量余弦算法计算两个文本的相似性 ,下面就是写了一个分词的工具类:

package com.taohan.online.exam.util;

import com.hankcs.hanlp.HanLP;
import com.hankcs.hanlp.seg.common.Term;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.regex.Pattern;


/**
 * 分词工具类
 */
public class HanlpUtil {

    /**
     * 判断标点符号正则表达式, 去掉标点符号
     */
    private static Pattern PATTERN = Pattern.compile("\\pP");


    public static void main(String[] args) {
        System.out.println(cosine("天气预报说,明天会下雨,你明天早上去上班的时候记得带上伞。"
                ,"你明天早上去上班的时候记得带上伞,天气预报说的可能会下雨。"));
    }


    /**
     *  0.5543
     *
     * 词向量余弦算法计算文本相似度
     *
     * @return
     */
    public static double cosine(String userAnswer, String standAnswer) {
        List<String> originWord = getWords(standAnswer);
        List<String> targetWord = getWords(userAnswer);
        Map<String, int[]> wordDict = new HashMap<>();
        for (String word : originWord) {
            if (!wordDict.containsKey(word)) {
                int[] value = new int[2];
                value[0] = 1;
                wordDict.put(word, value);
            } else {
                wordDict.get(word)[0] += 1;
            }
        }
        for (String word : targetWord) {
            if (!wordDict.containsKey(word)) {
                int[] value = new int[2];
                value[1] = 1;
                wordDict.put(word, value);
            } else {
                wordDict.get(word)[1] += 1;

            }
        }
        int dictNum = 0, originNum = 0, targetNum = 0;
        for (Map.Entry<String, int[]> entry : wordDict.entrySet()) {
            int origin = entry.getValue()[0];
            int des = entry.getValue()[1];
            originNum += origin * origin;
            targetNum += des * des;
            dictNum += origin * des;
        }
        double sqrt = Math.sqrt(originNum * targetNum);
        BigDecimal scale = new BigDecimal(dictNum).divide(new BigDecimal(sqrt), 4, BigDecimal.ROUND_HALF_UP)
                .setScale(4, BigDecimal.ROUND_HALF_UP);
        return scale.doubleValue();
    }


    /**
     * 分词
     *
     * @param str
     * @return
     */
    public static List<String> getWords(String str) {
        List<String> list = new ArrayList<>();
        if (StringUtils.isBlank(str)) {
            return list;
        }
        List<Term> segment = HanLP.segment(str);
        for (Term term : segment) {
            //https://github.com/hankcs/HanLP/tree/1.x
            if (!PATTERN.matcher(term.word).matches()) {
                list.add(term.word);
            }
        }
        return list;
    }

}

中文分词就解决了, 还有向量余弦算法计算文本相似度 的问题也解决了,

 

下面是一个用户答案的评分的工具类, 以及其使用的示例, 

用户输入用户的答案, 用户答案和标准答案的多个关键字进行比较, 得到关键词双向匹配得分, 再和标准答案进行两个答案的文本比较得到相似性得分, , 两个得分计算平均值, 得到最后的得分.

package com.taohan.online.exam.util;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class CompareUtil {


    public static void main(String[] args) {
        String userAnswer = "多态是在程序还没运行时不知道调用哪个函数,在程序执行中,根据情况动态确定,操作很灵活";
        String standAnswer = "多态是在程序还没运行时不知道调用函数,在程序执行,根据情况动态确定";
        List<String> keywords = Stream.of("多态", "程序", "函数名", "参数", "运行情况").collect(Collectors.toList());
        double score = getUserAnswerScore(userAnswer, standAnswer, keywords);
        System.out.println(score);

    }


    /**
     * 获取最后的得分
     *
     * @param userAnswer  用户答案
     * @param standAnswer 标准答案
     * @param keywords    关键词
     * @return
     */
    public static double getUserAnswerScore(String userAnswer, String standAnswer, List<String> keywords) {
        if (StringUtils.equals(userAnswer, standAnswer)) {
            return 1.0;
        }
        if (StringUtils.isBlank(userAnswer)) {
            return 0.0;
        }
        double textSameScore = HanlpUtil.cosine(userAnswer, standAnswer);
        double score = 0;
        if (keywords != null && keywords.size() > 0) {
            score = getCompareScore(keywords, userAnswer);
        } else {
            score = textSameScore;
        }
        //计算两者的平均数
        BigDecimal scale = new BigDecimal(textSameScore).add(new BigDecimal(score))
                .divide(new BigDecimal(2), 4, BigDecimal.ROUND_HALF_UP)
                .setScale(4, BigDecimal.ROUND_HALF_UP);
        return scale.doubleValue();
    }


    /**
     * 0.4254
     * 获得关键词双向匹配得分
     *
     * @param keywords
     * @param userAnswer
     * @return
     */
    public static double getCompareScore(List<String> keywords, String userAnswer) {
        List<BigDecimal> list = new ArrayList<>();
        for (String keyword : keywords) {
            BigDecimal precent = getPrecent(userAnswer, keyword);
            list.add(precent);
        }
        BigDecimal sum = new BigDecimal("0");
        for (BigDecimal bigDecimal : list) {
            sum = sum.add(bigDecimal);
        }
        BigDecimal scale = sum.divide(new BigDecimal(list.size()), 4, BigDecimal.ROUND_HALF_UP)
                .setScale(4, BigDecimal.ROUND_HALF_UP);
        return scale.doubleValue();
    }


    /**
     * 比较两个字符串的相似度
     *
     * @param answer
     * @param oneWord
     * @return
     */
    public static BigDecimal getPrecent(String answer, String oneWord) {
        int index = 0;
        if (oneWord == null || oneWord.length() < 1) {
            return new BigDecimal(0);
        }
        if (answer.indexOf(oneWord) != -1) {
            index = oneWord.length();
        } else {
            int length = oneWord.length();
            for (int i = 0; i < length; i++) {
                String a = oneWord.substring(i, length - 1);
                String b = oneWord.substring(i + 1, length);
                if (answer.indexOf(a) != -1) {
                    index = a.length();
                    break;
                }
                if (answer.indexOf(b) != -1) {
                    index = b.length();
                    break;
                }
            }
        }
        if (index == 0) {
            for (int i = 0; i < oneWord.length(); i++) {
                if (answer.contains(String.valueOf(oneWord.charAt(i)))) {
                    index = 1;
                }
            }
        }
        BigDecimal decimal = new BigDecimal(index)
                .divide(new BigDecimal(oneWord.length()), 2, BigDecimal.ROUND_HALF_UP)
                .setScale(4, BigDecimal.ROUND_HALF_UP);
        return decimal;
    }


}

其实就是两个工具类的事情, 很简单.

这个是别人花钱雇我写的, 为了保证原创性, 暂时不会公开出来(大概4个月后会公开). 仅供大家参考

### 回答1: PSPICE 17.2 是一种用于电子电路仿真和分析的软件工具。下面是一份简单的 PSpice 17.2 使用初级教程: 1. 安装和启动:首先,你需要下载并安装 PSpice 17.2 软件。安装完成后,双击图标启动软件。 2. 创建电路:在软件界面上,选择“文件”>“新建”,然后在电路编辑器中创建你的电路。你可以从元件库中选择组件,并将其拖放到画布上。连接元件的引脚以构建电路。 3. 设置元件参数:双击元件以打开元件参数设置对话框。在对话框中,设置元件的值、名称和其他参数。对于电阻、电容等基本元件,可以直接输入数值。 4. 设置仿真配置:选择“仿真”>“设置和校验”,然后在仿真设置对话框中选择仿真的类型和参数。你可以选择直流分析、交流分析、暂态分析等。设置仿真参数后,点击“确定”。 5. 运行仿真:选择“仿真”>“运行”来启动仿真。在仿真过程中,软件将模拟电路的响应,并将结果输出到仿真波形窗口中。 6. 查看仿真结果:在仿真波形窗口中,你可以查看各个元件的电流、电压等参数随时间变化的波形。你还可以对波形进行放大、缩小、平移等操作,以更详细地分析电路的性能。 7. 保存和导出结果:在仿真过程中,你可以选择将结果保存为文件或导出为其他格式,如图像文件或数据文件。 以上是 PSpice 17.2 使用初级教程的基本步骤。随着实践的深入,你可以进一步了解复杂电路的建模和分析方法,并尝试更高级的功能和技术。 ### 回答2: PSPICE 17.2是一款电子电路仿真软件,用于对电路进行分析和验证。以下是PSPICE 17.2的使用初级教程: 1. 下载和安装:在官方网站上下载PSPICE 17.2并进行安装。 2. 组件库:打开PSPICE软件后,点击“Capture CIS”图标,进入组件库界面。选择适当的电子元件,如电阻、电容、二极管等,将它们拖放到画布上。 3. 电路连接:在画布上拖放所需元件后,使用导线工具连接它们。点击导线图标,选择合适的连接方式,并将其拖动到适当的端口上。 4. 参数设定:双击元件,弹出元件属性对话框。在这里设置元件的数值,例如电阻的阻值、电容的电容值等。 5. 电源设置:在画布上点击右键,选择“Power Sources”,然后选择适当的电源,如直流电源或交流电源。设置电源的电压或电流数值。 6. 仿真设置:点击画布上方的“PSpice”选项,选择“Edit Simulation Profile”打开仿真配置对话框。在仿真配置中,设置仿真参数,如仿真类型(直流、交流、脉冲等)、仿真时间等。 7. 仿真运行:在仿真配置对话框中点击“Run”按钮,开始进行电路仿真运行。仿真完成后,可以查看并分析仿真结果,如电流、电压、功率等。 8. 结果分析:通过菜单栏中的“PSpice>Probe”选项,打开特定信号的仿真结果。通过选择信号节点,可以显示该信号的波形、幅值和频谱等信息。 9. 数据输出:仿真结束后,可以通过“PSpice>Results”菜单栏选项,导出仿真结果到文本文件,以供后续分析。 10. 误差调整:如果仿真结果与预期不符,可以检查电路连接、元件参数等以找出问题。根据需要进行调整,重新运行仿真以验证改进效果。 以上就是PSPICE 17.2使用初级教程的简要介绍。在使用过程中,请参考软件的帮助文件和官方文档,以获取更详细的指导和解决方法。任何新的软件都需要不断的实践和尝试,希望这个教程能对你有所帮助。 ### 回答3: PSPICE 17.2是一款常用的电路仿真软件,用于电路设计和分析。下面是一个简要的PSPICE 17.2的初级教程: 1. 下载和安装:首先,从官方网站下载PSPICE 17.2,并按照安装向导进行安装。安装完成后,打开软件。 2. 创建新工程:在PSPICE 主界面上,点击“File”菜单,然后选择“New Project”来创建一个新的工程。给工程起一个适当的名字,并选择工程的存储位置。 3. 添加电路元件:在工程界面上,点击“Place”图标,然后选择不同的元件来构建你的电路。你可以从库中选择各种电子元件,如电阻、电容、电感等,并将它们拖放到工程界面上。 4. 连接元件:选择“Wire”图标,然后点击元件的引脚来连接它们。确保连接顺序正确,以保证电路的正确性。 5. 设置元件参数:对于每个添加的元件,你需要设置它们的参数。右键点击元件,选择“Edit Propertiess”,然后在弹出的窗口中输入适当的参数值。 6. 添加电源:在电路中添加电源,以提供电路所需的电能。选择“Place”图标,然后选择合适的电源元件并将其拖放到电路中。同样,设置电源的参数值。 7. 设置仿真配置:在工程界面上,点击“PSpice”菜单,然后选择“Edit Simulation Profile”来设置仿真配置参数。你可以选择仿真类型、仿真时间和仿真步长等。 8. 运行仿真:点击“PSpice”菜单,选择“Run”来运行仿真。PSPICE将自动运行仿真并显示结果。 9. 分析和优化:根据仿真结果,可以分析和优化电路的性能。你可以观察电流、电压和功率等参数,以评估电路的性能,并根据需要进行调整。 10. 保存和导出结果:在分析和优化完成后,可以保存你的工程并导出结果。点击“File”菜单,选择“Save Project”来保存工程,然后选择“Outut”菜单,选择“Export”来导出结果。 以上是PSPICE 17.2的初级教程的简要介绍。通过以上步骤,你可以开始使用PSPICE 17.2进行电路设计和仿真。在实践中不断探索和学习,你将成为一个熟练的PSPICE用户。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值